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ABSTRACT
Agriculture production yield varies with weather changes. This causes farmers to incur
losses. For instance, extreme temperature leads to low maize yield. This study describes
incomplete temperature weather derivatives in agriculture markets and applies risk
management hedging techniques. It focuses on hedging crop yield against extreme
temperatures during irrigation farming, which is done without a greenhouse. This study
primarily aims to hedge maize crop yields using temperature derivatives. This is
achieved by (i) developing a daily average temperature stochastical model. (ii) Deriving
statistical properties of the model based on the historical data of 31 years of our sample
space (1990 — 2020 Kasungu District Temperature data). (iii) Pricing temperature
derivatives to hedge maize crop yield. To achieve this, a stochastically Ornstein-
Uhlenbeck process with the time-varying speed of reversion, seasonal mean, and local
volatility that depends on the local average temperature was proposed. Based on the
average temperature model, down and output, option pricing models for average
temperature and growing degree day are presented. The study's findings suggest that
the temperature will rise gradually but steadily. This scenario does not offer a positive
outlook for agriculture production since a temperature rise can damage it. The premium
for weather derivative options has been calculated as $3.50 per GDD index contract.
Farmers and agricultural stakeholders can hedge their crops against extreme
temperature-related weather risks with these models. In line with Malawi's 2063
Millennium Development Goals (MDGS), this study acts as an eye opener for the
government to put a policy on whether derivatives should be practised in our country

hence, increase cash holding by improving the situation of the farmer and country.
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CHAPTER ONE

INTRODUCTION

This chapter will discuss the study's background in section 1.1. Section 1.2 looks at the
problem statement, followed by the study's objective in section 1.3. The study's impact
has been discussed in section 1.4. This is followed by its impact, limitations, and
structure in sections 1.5, 1.6, and 1.7, respectively.

1.1 Background

Crops are susceptible to rising atmospheric CO> concentrations and climate change,
including temperature and precipitation variations (Rosenzweig, 2014; Wheeler, 2013).
of all the changes, rising temperatures have the most significant potential to affect
agricultural yields negatively (Ottman et al., 2012; Porter, 1999). Climate models can
better predict changes in regional temperatures than changes in precipitation.
According to meteorological data, the mean annual temperature in regions where
soybean, wheat, rice, and maize are grown has risen by about 1 °C over the past century.
It is predicted to rise even more if greenhouse gas emissions rise (Zhao, 2017). To feed
a growing global population, it is imperative first to evaluate the danger to global food
security and then estimate the impact of temperature increase on crop yields worldwide,

considering any geographical variations (Nelson, 2010).

Agriculture is the backbone of the Malawian economy (Ministry of Agriculture, 2016).
It is an important sector that generates income for most of the population, helps Malawi
earn money through exports, and supplies most manufacturing industries. Many
smallholder farmers in Malawi primarily get their income from the agriculture and
agribusiness sectors, which comprise an essential portion of the country's critical
economic activity. Most farmers grow maize, soya beans, tobacco, rice, and ground

nuts. Maize is the main crop and staple food in Malawi.
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Smallholder farmers grow maize for food, and they sell the excess. Low yields of maize
are a yardstick of hunger in the country. According to reports, it contributes to more
than 25% of Africa's GDP and roughly 70% of the labour force (Gyamerah, 2019).
According to (the Ministry of Agriculture, 2016), It is reported that the agriculture
sector supports about 85% of the population in terms of employment. It accounts for
over one-quarter of Malawi's gross domestic product and 90% of the foreign exchange.
As a result, the development of the African economies, of which Malawi is a member
state, has agriculture as one of its most significant and prominent fields.

Malawi's agricultural production heavily depends on weather elements like rainfall,
temperature, wind, etc. Any variations in these elements significantly affect harvest.
For instance, the production of maize is greatly influenced by the weather. The stages
of plant growth affect how each crop species responds to temperature variations. A
specified range of maximum and minimum temperatures for each species determines
the limits of visible growth. Extreme temperature makes it difficult for maize to
develop. Extremely high temperatures during the reproductive stage will impact the
viability of the pollen, the process of fertilization and the development of grains or fruits
(Hatfield et al., 2011, 2015). The yield potential of initial grains or fruits will be reduced
by repeated exposure to extremely hot or cold conditions during pollination. However,
the most detrimental effects of acute exposure to vital events may occur during the
reproductive stages. Because this measure is the one that producers and consumers are
most concerned about, the effects of climate change are most noticeable in maize crop
productivity. Maize grows well under temperatures of 21% to 27%. According to
(Hatfield et al., 2015), the base temperature below which crop growth ceases is 10°%
and above 38° C.

This underlines the significance of contingency planning, which includes setting up
backup funds, strengthening currency reserves to protect against external shocks, and

validating the usage of weather insurance (Dzupire et al., 2019). Like insurance against

poor crop Yyields, which can be used at the family level, weather derivatives offered to

small farmers may do the same.



According to (Islam & Chakraborti, 2015), derivatives are "financial instruments linked
to a specific monetary instrument, indicator, or commodity and through which specific
risks can be traded in the capital markets in their own right." The value of a financial
derivative is derived from the price of an underlying item, such as an asset or index.
Unlike debt securities, no principal is advanced to be repaid and no investment income
accrues.” The underlying asset may take on a variety of shapes, including goods such
as grain, coffee, and orange juice; precious metals such as gold and silver; currency
exchange rates; and bonds of many kinds, such as medium- to long-term transferable
debt securities issued by governments, businesses, etc. Finally, securities of
corporations are marketed on reputable transactions of stocks and the Stock Index,

including shares and share warrants.

Financial derivatives are essential for controlling the financial risk that corporations
face. They have been highly successful, widely used, and valuable advances in the
capital markets. Financial derivative markets have recently been discovered to be
operating actively in both developed and developing nations. The principal application
is hedging, often known as a function of price insurance, risk shifting, or risk
transference. They give traders a means to manage their risks or shield themselves from
unfavourable changes in the value of the underlying assets they work in. For instance,
a farmer may take the market's risk and sell a futures contract to offset the risk.

According to Prabakaran (2018), a class of financial derivatives known as "weather
derivatives" are those whose payment is based on weather factors like temperature,
precipitation, wind, and snowfall. Organizations or individual farmers can use this
financial tool as risk management to lower the risks associated with unforeseen weather
situations. The derivative's seller accepts disaster risk in exchange for a premium. The
seller will earn if no damages happen before the contract's expiration. The derivative
buyer is entitled to the agreed sum in the event of unforeseen or unfavourable weather.
Using temperature-based derivatives, one may now buy and trade a natural event. To
do so, two things are necessary: a price enabling a transaction and a unit of measurement
for the natural occurrence that everyone can agree on. According to A. K. Alexandridis
and A. D. Zapranis (2012), contracts created for the weather derivative market based

on temperature make up 98-99% of the trading asset.



The fundamental assets in temperature contracts are temperature indices like heating

degree days (HDD) and cooling degree days (CDD).

In principle, insurance and derivatives may seem identical, yet they differ significantly
in the buyer's motivation. A derivative is an investment vehicle in which the investor
may stand to gain or lose money depending on whether they exercise their call option
to redeem their investment before the derivative contract expires. Depending on the
strike price, the investor could either make or lose money if the asset's value changes
throughout the contract's period. A derivative so derives its value from the underlying
asset or securities that are similar to it. In contrast, insurance is a means of risk transfer
in which the insured assigns a portion of the risk to a third party and experts who will
only be compensated in the event of a loss (Nicholson, 2018).

Insurance contracts and derivatives differ primarily in that the holder of an insurance
contract must establish that he has experienced a monetary loss to be entitled to
compensation. The insurance provider will withhold his payment if he cannot
demonstrate this. No matter how the weather impacts the derivative's holder, payouts
for weather-related contracts are only based on the weather's actual outcome. A weather
derivative can be purchased and used to one's advantage without having any weather-
sensitive production, for instance. These contracts can be purchased only for
speculative purposes, just like other derivatives (Alaton; Djehiche; & Stillberger,
2010).

It is difficult for insurance contracts to function when there are uncertainties in average
weather because they are often created to protect the holder from significant weather
occurrences like earthquakes and typhoons. On the other hand, weather derivatives can
be designed to have pay-outs in any weather scenario. Derivative contracts have another
significant advantage over insurance contracts. Two actors might be available, one of
whom will profit from a freezing winter while the other will profit from a warm one.
These two parties can negotiate in a futures market and sign a contract to share risk-
hedging responsibilities. In the insurance industry, this is not feasible (Alaton,
Djehiche; & Stillberger, 2010).



In Malawi, where farming is an investment, derivatives make sense. Investors typically
anticipate some return, though this is not always true. For instance, unlike crop
insurance, no proof of abnormally high or low temperatures is required in order to get
compensation. No matter how the temperature impacts the derivative holder, the
payouts of temperature derivatives are only based on the temperature's actual result.
Regardless, the farmer will always have access to derivatives to protect him against
losses. If there are no losses, the farmer will make money. Derivatives are, therefore,

more farmer-friendly than crop insurance.

1.2 Problem statement

Crop production faces several challenges, mainly due to exposure to unfavourable
weather conditions, including temperature changes. Agriculture yield is significantly
influenced by weather and climate (Geng et al., 2019). However, any restrictions are
unacceptable at a time when agricultural yields are crucial to the security of the world's
food supply. The introduction of farm management strategies, including controlled
environment farming, is the consequence of this search for solutions. A form of
controlled environment farming called greenhouse farming enables optimum
management and lessens the risks associated with inclement weather. However, most
farmers cannot use greenhouses due to their expensive cost. Agriculture has not adopted
financial weather derivatives to the same extent as the energy sector. However, studies
have looked at contracts based on historical data based on rainfall or heat index (Sun et
al., 2013). The relationship between temperature and maize output is not always clear-
cut because various products, stages of maize development, and soil textures, to name
a few, respond to temperature differently. In order to focus on pricing financial
derivatives for hedging maize crop output, Kooten (2015) analysed various methods of
pricing weather derivatives options based on Growing Degree Day (GDD). Patricia P.
(2021) developed the Growing Degree Day (GDD) European put option for rice in
Laguna by simulating the daily average temperature. Weather derivatives and weather
insurance may be used as tools for agricultural risk management, according to (Turvey,

2001), who looked into the price of weather derivatives in Ontario.



Zong, and Ender (2016) created a climatic zone-based growth degree-day contract, a
new weather derivatives contract. Their goal was to reduce weather risk in mainland
China's agriculture industry by providing new forms of temperature indexes. Although
various weather risk management technologies have recently been brought into the
Weather Derivatives (WD) market for smallholder farmers in the majority of nations
across the world, purchases have been fewer than predicted. These studies ignored that
such agriculture may also be done by irrigation, where temperatures are not regulated,
as opposed to agriculture during the rainy season, where raindrops control the air
temperature (Means, 2018). According to Quindala and Cuaresma (2021), every 1°C
increase during the dry season might result in a 10% decrease in yield. As a result, this
study focuses on hedging crop production against excessive temperatures during
irrigation farming, which is done without a greenhouse since it is prone to extreme

temperatures, which damage crop vyields.

1.3 Research objective

1.3.1 Main objective

The main objective is to hedge crop yields using temperature derivatives

1.3.2 Specific objective

Specifically, the objectives of the study are:
1. Develop a daily average temperature stochastic model
2. Derive statistical properties of the model based on historical data

3. Pricing temperature derivatives to hedge crop yield

1.4 Impact of the study

This study will help companies and individuals overcome crop yield loss due to
temperatures. They can explore the possibility of hedging the risks due to weather by
buying temperature derivatives that guarantee a payoff once there is forecasted erratic
temperature. The seller of the temperature derivative agrees to bear the risk of disasters
in return for a premium. If no damage occurs before the expiration of the contract, the

6



seller will make a profit. In the event of unexpected or adverse weather, the buyer of
the derivative claims the agreed amount, thereby being protected from the loss. This
means that providing the derivatives means increasing cash holding and food, which
aligns with Malawi's 2063 vision MIPI, thereby improving the poverty situation.

1.5 Limitation of the study

There still needs to be an organised market for derivatives in Malawi. However, the
results of this study can open new products that can be offered by agencies that already

offer agricultural insurance products.

1.6 Structure of the study

The study is structured as follows. We begin with the next chapter, which reviews
related literature to see what other scholars and researchers have said about modelling
temperatures. The third chapter discusses the development of daily average
temperatures, followed by the stochastic method for simulating daily average
temperatures and a description of a weather index distribution method to price weather
derivatives. We end with the fourth and fifth chapters by discussing and analysing the

results and making some concluding remarks.



CHAPTER TWO

LITERATURE REVIEW

This chapter will review the historical background of weather derivatives in section 2.1.
It also looks at how temperature and pricing derivative models have been reviewed in

sections 2.2 and 2.3, respectively.

2.1 Historical background of weather derivatives

Weather is a significant factor in many commercial operations, and unforeseen weather
catastrophes can result in substantial financial losses. For instance, mild summers
lessen demand for power and hence utility businesses' profit margins; less snowfall in
the winter raises ski resort running expenses; and droughts result in poorer agricultural
output. Weather risk refers to the unfavourable financial effects of climatic variation.
As per (Allianz, 2013), weather and climate directly or indirectly impact nearly 30% of
US GDP ($5.7 trillion out of $15.7 trillion), and extreme weather risk affects 70% of
US enterprises. The same survey also shows how vulnerable many firms are to even
minute variations in the weather. According to estimates, regular weather volatility
impacted $534 billion, or 3.4%, of the US GDP in 2012.

Weather derivatives, catastrophe bonds, and insurance can all be used to reduce weather
risk. Traditionally, insurance has handled severe weather risk on an indemnity basis.
The disadvantage of this approach is that filing claims is typically expensive and time-
consuming. Furthermore, as (Hess, et al., 2002) point out, there is a shortage of
acceptable forms of collateral, government interventions, and information asymmetry
in private insurance, which results in high unit transaction costs, restricted distribution

of institutions, and restricted access to people experiencing poverty.
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Catastrophe bonds were first introduced in the mid-1990s. Through these bonds,
weather risk can be shifted to capital market investors, who can access a considerably
greater pool of resources than the insurance sector. Bond payments are correlated with
an industry-wide loss or a weather index in catastrophe bonds, which mitigates the
knowledge asymmetry issue. In comparison to insurance contracts, they also offer more

prompt payments.

Weather derivatives convey weather risk to capital market investors in a manner akin
to catastrophe bonds. Their profits are reliant on easily measurable climatic
occurrences. Weather derivatives are intended to hedge the adverse financial effects of
regular weather variance rather than those of exceptional weather-related occurrences,
in contrast to catastrophe bonds. As a weather option included in a power contract, the
first weather derivative transaction was carried out by Aquila in 1997 (Considine,
2000). Since then, the deregulation of the US energy sector has led to a sharp expansion

of the weather derivatives market.

Therefore, improved weather risk management is necessary when deregulation
increases competition among energy suppliers. The range of meteorological variables
covered by weather derivatives has increased to include temperature, precipitation,
snowfall, wind speed, humidity, and other factors to meet the demands of diverse
market players. They have durations ranging from a week to several years, and their
transaction sizes cover tiny risks up to several hundred million dollars or more for more
extensive exposures. The London International Financial Futures and Options
Exchange (LIFFE), the Chicago Mercantile Exchange (CME), and the Intercontinental
Exchange (ICE) now offer standardized weather derivatives, even though the majority

of weather derivative transactions still take place over the counter.

We focus on the most traded weather derivatives in the market, temperature derivatives,
and this study focuses on the GDD Index. Two main steps are usually involved in
pricing temperature derivatives. Firstly, a model for temperature dynamics must be
built. Next, the second phase involves utilizing the presumptive model to obtain
analytical or numerical estimations of weather derivative pricing to hedge crop yield.

9



2.2 Temperature process models

According to (Dzupire et al., 2018; Alaton, 2002), the temperature process's four
characteristics include seasonality, long-term trends, unpredictability, and mean
reversion. The temperature process varies in value throughout the year due to
seasonality. A well-defined model should include all of these temperature

characteristics.

Dornier and Queruel, (2000) modelled temperature fluctuations as a regression between
daily deseasonalized temperatures. The suggested model divides the daily average
temperature evolution into two sections, namely seasonal trend and random walk.
Seasonal change and global warming are included in the formulation of seasonality as
a sine function. However, this model was lacking and did not consider the seasonality

and instability of temperature.

By describing volatility as a piece-wise constant function that represents the monthly
variance in volatility, (Alaton, 2002) updated the model by Dornier and Queruel (2000).
Their choice of volatility was confirmed by the observation that the quadratic variation
of the volatility was practically constant over each month in the data set. Despite the
lack of a statistical test for normality, the Wiener process was chosen as the driving
noise in the model since the observed temperature differences were almost normal.
Possible time dependencies in the residuals seen in the regression models are not

mentioned in either study.

According to (Brody, 2002), temperature dynamics are represented using a stochastic
process known as fractional Brownian motion, where the temperature change is
regressed on the deseasonalized temperature from the day before. Based on a data series
of daily average temperatures from Central England, it was possible to see evidence of
fractional behaviour in temperature swings after subtracting the seasonal mean. The

authors did not conduct the same fractional analysis for the model's residuals, as noted
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by (Benth, & Saltyt-Benth, 2005). Hence, it is unclear if the residuals' time dependence
will exhibit characteristics of fractional noise. According to the argument (Dornier &
Queruel, 2000), one should include seasonal variation changes in the model to obtain

a reliable mean reversion model.

A mean-reverting model powered by a Lévy process was developed by (Benth, 2003;
Dornier & Queruel, 2000) based on the Ornstein-Uhlenbeck (O-U) model. This came
about because actual data from Norway rejected the normality test. In addition, the
model's variance is a function with an empirical foundation estimated from observed
variances. A flexible distribution that can capture the semi-heavy tails and skewness
shown in the data is recommended: a generalized hyperbolic distribution. The Lévy
process complicates the concept, which assumes constant mean reversion speed.
Additionally, the application of AR (1) misses the gradual decrease in temperature

autocorrelations, which may materially undervalue weather derivatives.

In a related study (Benth & Saltyt-Benth, 2005), the authors developed an O-U mean
reversion model with Brownian motion as the driving noise and the seasonal mean and
volatility as truncated Fourier series. Both series' order was decided upon randomly,
and no statistical analysis was done to determine the importance of each parameter. A
closed-form solution for pricing weather derivatives was discovered to be possible
using the model, which could also capture temperature dynamics. In Benth and Saltyt-
Benth (2011), a different model from the O-U is put forth as a continuous time
autoregressive model for the temperature dynamics, with the volatility function being
the product of the seasonal function and a stochastic process using the Barndoff-Nielsen

and Shephard model for stochastic volatility.

Alexandridis and Zapranis (2006) extended the O-U mean reverting model developed
by (Benth & Saltyt-Benth, 2005) with seasonality in the level and volatility, validated
by more than 100 years of temperature data collected in Paris. Unlike (Benth, & Saltyt-
Benth, 2005) here, wavelet analysis is used to identify the seasonality component in the
temperature process and the volatility of the temperature residuals. It was observed that
the distribution statistics of the residuals of AR (1) showed the presence of negative

11



skewness and positive kurtosis (> 3), indicating a significant deviation from the normal
distribution. In addition, the effect of replacing the AR (1) process with ARMA,
ARFIMA, and ARFIMA-FIGARCH was also explored. However, all these processes
failed to capture the slow time decay of the autocorrelations of temperature.

In order to study the time dependence of the mean reversion parameter k(t) on time,
Alexandridis (2008) created an O-U stochastic temperature model driven by the Wiener
process. He then employed neural networks to analyse the model's results. The model
is discretized as an AR (1) model and is an extension of the (Benth & Saltyt-Benth,
2005) generalization of (Dornier & Queruel, 2000) work.

A series of daily values of k(t) are obtained by non-parametrically estimating the
temperature process using neural networks and computing the derivative of the network
output concerning the input. This eliminates the restriction of a constant mean reversion
speed in some models. The results indicate that the speed of mean reversion varies quite
a bit daily; therefore, expressing the speed as a function of time increases the model's

accuracy and dramatically lowers the cost of weather derivatives.

For the Zhengzhou region, Wang et al. (2015) created a workable model of the daily
average temperature that is used in weather derivative pricing. Then, using 62 years of
daily historical data, they applied the mean-reverting Ornstein-Uhlenbeck process to
characterize the temperature evolution after researching the history of the weather
derivatives market. Chen et al., . (2018) used SARIMA (Seasonal Autoregressive
Integrated Moving Average) techniques to analyse the monthly mean temperature in
Nanjing, China, from 1951 to 2017. The training set includes data from 1951 to 2014,
and the testing set includes data from 2015 to 2017.

Additionally, Nury and Koch (2013) established ARIMA (Auto Regressive Integrated
Moving Average) models and applied them to provide short-term forecasts of the
monthly maximum and minimum temperatures in the northeast Bangladeshi districts of
Sylhet and Moulvibazar. Like Benth and Saltyt-Benth (2005) and Alaton, (2002), this
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0O-U mean reversion model uses the truncated Fourier series to express volatility as a

cyclic function.

2.3. Pricing models of weather derivatives

The literature empirically demonstrates the presence of climate modelling and its
impact on the electricity market, as Weron (2014) demonstrates. This study's findings
imply that temperature may partially explain the predictable behaviour of power
pricing, which has been consistently proven by the literature on electricity price
forecasting to be governed by geographical and temporal variables.

Uncertainty was reduced using an earlier strategy (Atalon et al., 2002; Richards, 2004)
and later adopted by (Svec & Stevenson, 2007; Tastan & Hayfavi, 2017). The Sydney
accumulated heating degree day (HDD) and cooling degree day (CDD) index levels
were forecasted by Svec and Stevenson (2007) using time series and stochastic
techniques to model pricing. Similarly, (Alaton, 2002) developed a pricing model for
weather derivatives with pay-outs based on temperature, for which they conducted
Monte Carlo simulations on a mean-reverting process. Using a mean-reverting process
driven by a Lévy process to depict jumps and other temperature aspects that may play
a significant role in the deviations for specific places (Tastan & Hayfavi, 2017)
computed the temperature index. In conclusion, a generic pricing strategy for weather
derivatives was proposed by (Richards, 2004) for cooling degree day weather options
in Fresno, California. The temperature follows a mean-reverting Brownian motion
process with discrete jumps and autoregressive conditional heteroscedastic errors,
which they discovered using specification tests. They developed an equilibrium price
model based on this procedure for the cooling degree day weather possibilities.

Weron (2014) offers more justification for his projection of the power price. Weron
(2014) sought to clarify the complexity of the currently available solutions, their

advantages and disadvantages, and the potential dangers that forecasting tools present.
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The Black-Scholes equation was then used by (Prabakaran, 2018) to construct an

option-pricing model for energy derivative markets.

Many writers have utilized the Black-Scholes model (Black & Scholes, 1973), which
can be employed independently or as part of a portfolio, to estimate option pricing based
on features. The Black-Scholes model's applicability to weather derivatives has been
examined in the literature (Botos & Ciumas, 2012). The Black-Scholes model,
however, did not perform well with a weather index, according to the results, which
were attributed to mathematical and economic discrepancies. According to these
authors (Botos & Ciumas, 2012), the models could be applied to portfolios that include
weather derivatives. In addition, (Brody, 2002) proposed a fractional version of the
Ornstein-Uhlenbeck process. By taking into account the memory effect and partial
differential equations, they were able to derive the cost formulas for the most widely
used temperature indices, such as heating Degree Day (HDD), cooling Degree Day
(CDD), and cumulative average temperature (CAT). The same fractional Ornstein-
Uhlenbeck process was then used in (Benth, 2003) to propose an arbitrage-free model
for derivatives based on temperature, together with quasi-conditional expectation and
Wick Ité Skorohod (WIS) integrals of the fractional Brownian motion (fBm). Oksendal
(2014) created the WIS integrals of the fBm. In addition to the pricing for contracts as
in (Benth, 2003), the dynamics of the option values are derived. The autocorrelation
feature of the return time series is attempted to be modelled using various approaches.
Fractional Brownian motion (fBm) is one of these attempts. The primary source cited
was Oksendal (2014) (Prabakaran et al., 2020). Fraction Brownian Motion (FBM) was
utilized to price temperature derivatives on energy using option pricing.

Although financial weather derivatives in agriculture have not been as widespread as
in the energy industry, studies have examined using historical data to create heat or
rainfall index-based weather derivatives (Sun, & Lou, 2013). This study proposes
weather derivatives in agriculture hedging crop yields using temperature derivatives
developed by (Patricia, 2021) that modelled the average temperature and designed a
growing degree day (GDD) European put option for rice in Laguna. Patricia's (2021)
study concentrated on modelling temperature during the rainy season, which is similar
to what (Kooten, 2015 and Sun, 2017) did. However (Kooten, 2015) also concentrated
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on pricing using financial derivatives to protect the output of corn crops by contrasting
several approaches to calculate the price of weather derivatives using Growing Degree
Day (GDD)

It has been observed that these studies (Sun, 2017; Kooten, 2015; Patricia, 2021; Sun,
& Lou, 2013) did not take into consideration that such agriculture can also be done
through irrigation where temperatures are not controlled, as compared to agriculture
done in the rainy season where the rain drops to control the air temperature (Means,
2018). It has also been observed that their pricing is just a vanilla option, which is also
expensive. Hence, this study focuses on hedging crop yield against extreme
temperatures during irrigation farming, which is being done without a greenhouse as it
IS prone to an extreme temperature that affects crop yields. Furthermore, it involves

down-and-out barrier option pricing, which is cheaper than the vanilla option.

To sum up this chapter, these models reviewed will help develop temperature
stochastical models and pricing models in the agricultural sector in the next chapter.
This will involve utilizing the presumptive model to obtain analytical or numerical

estimations of weather derivative pricing to hedge crop yield.
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CHAPTER THREE

METHODOLOGY

This chapter will discuss different methods and principles used in the study. These will
include the sampling procedure, data collection tool and techniques and method data of
analysis. Such that in section 3.1 we look at daily average temperature data. This is
followed by Temperature indices in section 3.2. In section 3.3, we have a daily average
temperature stochastical model. While pricing weather derivatives in an incomplete
market and temperature barrier option pricing will be discussed in sections 3.4 and 3.5,

respectively

3.1 Daily average temperature data

The data in this study is from the Kasungu district. It has been chosen because it is the
top-list district that grows maize under irrigation during the rainy and dry seasons,
which feeds a good percentage of Malawians (Phiri, 2016). Low maize yields in this

district will lead to hunger and affect the country's economy.

From January 1 1990, through December 31 2020, historical data on daily minimum
and maximum temperatures were gathered from the Department of Climate Change and
Meteorological Service's headquarters. This sample size of 31 31-year years will ensure
we accurately capture the long-term trend to forecast future temperatures. The missing
data was treated by finding the average temperature adjacent to the missing data,
carrying forward the last observation, and carrying backwards the following

observation. All the leap years have been dropped.
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3.2 Temperature indices

The temperature information collected from a given station in a given area is the
foundation for temperature indices. If T/"** and T/™" are the highest and lowest
temperatures recorded at a meteorological station on day i, respectively, the Daily
Average Temperature (DAT) on that day is calculated as

(Timax +Timin)

2 1)

A base temperature, the required temperature for a crop to germinate, and the daily

Ti=

average temperature (DAT) are two variables that determine how many degrees a day
there are. The heat that must build up each day for a crop to grow, sprout new leaves,
reach the reproductive stage, and eventually mature is known as the growing degree
day (Patricia P. et al., 2021). We consider maize crops to be produced under irrigation

from August to December. Maize requires at least 10°C. GDD is defined as:

GDDl = maX{Ti - 10,0} (2)
and the GDD for the whole 153-day period as,
GDD = %2} GDD; 3)

The 153-day period spans the period for maize crops from germination up to harvest.

3.3 Daily average temperature Stochastic model

Modelling daily average temperature is a hazardous task because multiple variables
govern weather. We will obtain information about temperature behaviour, which is
possible to assume as regular because temperature changes follow a cyclical pattern,
although with some variability. Hence, it is essential to carefully validate the specified
model before putting it into practical use for pricing weather derivatives. The modelling
approach specifies a stochastic process of temperature evolution by selecting it from a

parameterized family of processes.
3.4 A Gaussian Ornstein-Uhlenbeck Model for Temperature

Temperature has a mean-reverting evolution, meaning it can only briefly vary from its

mean value. The mean-reverting Ornstein-Uhlenbeck process predicts temperature
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behaviour by considering seasonal variation and long-term trends. The daily average

temperature variation will return to the mean in the long run.

We consider the stochastical process model by putting together seasonality, long-term
trends, unpredictability, mean reversion, and temperature.
dT, = dT™ + k(T!™ — T,)dt + o, dW; 4)

Proposition 3.1 (Alaton, 2010; Brody, 2002; Peter Alaton, 2002): If the Daily Average
Temperature (DAT) follows an Ornstein-Uhlenbeck process with a mean reversion that
IS mean-reverting and whose speed varies over time as well as a seasonal mean and

variance:

The Ito formula yields the following implicit solution:

t t t t
T, = T/ + el KODdu(Tm — T 4 elo KWdu f a5 e s Kdu gy,

N

which is the same as the following:
T, = [T — T,le M=) + T/ + [ e~ * g, aw, (5)
Proof: Let us rewrite dT; = dT{™ + k(T — T;) + o,dW; as
dT, = kT,dt + o,dB,

Where T, = (T, — T/™). The following transformation is practical for solving the

stochastic equation above:
G(T,t) = e~ lo kwaf,
Making use of the Ito lemma

aG _t 926G oG _(t N
% — o= o kwau 60, 2= ke fok(u)duTt
aT aTf at

anda = k(t)T,



We have that
—ftk(u)du" —ftk(u)du —ftk(u)du
th = (ke 0 Tt - ke 0 Tt) dt + O-te 0 dBt
Which reduces to

t
th = O'te_f0 k(u)dudBt

Suppose s < t, then integrating the above equation, we have that

t t
Gt - GS = f O-te_fo k(u)dudBt
S

t R R ¢
And replacing G, we have that e~ Jo ¥W4uT, — T, = [*g,e~JokWdugp,

By rearrangement, we achieve that

t
7, = e~ o kwdup | e—f(fk(u)duf oo~ KU g

N

Since T, = (T, — T™),

t
(T, = T = e~ Jo k@aucp _my | e—fotk(u)duf gpe~ s Kwdu gy,

N

Finally, by rearranging, we prove the proposition

t t t t
T, = Ttm + e—fo k(u)du(TS _ Tsm) + e—fo k(u)du + f o, e—fs k(u)dudw/s

N

Sinces =t—1'and u = t — s hence
T, = [Teoy — T 1e ) + T + [Fe™kEDg, dw, n

In equation (5), W is the Brownian motion, a; is the deterministic function of time t,

the random variable fste"‘(t‘r)ardwr is normally distributed with mean zero and a

. t _ _
variance [ e 2*¢"gZdW.,
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The Brownian motion's characteristic of independent increments forms the foundation
of the proof. The filtration F; leads us to the conclusion that T; is normally distributed,

with mean and variance given by:
EP[T|F] = [Ts — T ]e =9 + 1" (6)
VZ = var[T|%] = [ e 2¢old,. (7)
We now explicitly describe the equation's (3) expression when s =t — 1. | get
Te = [Teoqg — T{%yle *E) + T/" 4 ftt_l e Kt g, dW,. (8)

The variable ftt_l e k=g _dW, is a random variable having a Gaussian distribution,

mean zero, and variance:

V2 = var[T,|Fea] = [ e ¢ okd,. ©)
Therefore, we can write (8) as

Ty = [Teey — T ]e ™ + T + o,¢,. (10)

This means that (6) has a simple discrete time representation with an autoregressive
structure of order 1 (AR (1)). This result has significant implications for the estimate of
the unknown. This indicates that (6) has a straightforward discrete time representation
with an order 1 autoregressive structure (AR (1)). This outcome significantly impacts
the estimation of the unknown parameter in the equation above. Since the variable in
the case of T; is observed at discrete points in time rather than constantly, estimating in
continuous time is generally quite challenging. The likelihood function can only be
analytically expressed for a small subset of processes. The Ornstein-Uhlenbeck process
is one of them and is illustrated in (10). These models can be calculated with precision
using techniques like maximum likelihood. Although they use a two-step estimation
method, Atalon (2002) never assume that a generalized Ornstein-Uhlenbeck process
permits flawless discretization. The model of average temperature T; in day t is given
as follows as a result of applying the parameterized maximum likelihood method for
equation (10)
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Ty = a[T—q — T2 ] + T + ope (11)

with @ = e™* and where, .~ N(0, 1), the deterministic portion of the temperature is
T{™, the volatility is g;, and « is the mean reversion speed. When coming up with this
deterministic part, we consider the combination of seasonality, trend, and expression of

the sine function shift. Hence, it is given by the expression:
T = A+ Bt + Csin(wt + p) (12)

_ 2T
“ =365

where T{™ shows the predicted temperature for a day with t in 2021, where the number
of days in a year is given by t (1-365), Variable A represents the average daily air
temperature for the period from 1.1.1990 to 31.12.2020, variable B describes the impact
of an annual global warming trend, and variable C establishes the seasonality of
temperatures throughout the year, or how much the winter and summer temperatures
deviate from the annual temperature mean. Since the highest and lowest temperatures
neither happen at the beginning nor the middle of the year, this phenomenon is known

as phase shift, denoted by p.
Using trigonometric formula, we have
T™ = A+ Bt + Csin(wt + p)
= A+ B + C; sin(wt) + C, sin(wt)

Where

— /2 2
c= |c]f+c5

o)
p = arctan (—) -7
C1

Similarly, based on practical findings, we define the cyclic nature of the function &2
(Benth & Benth, 2005; Zapranis & Alexandridis, 2014).
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82 = c+ Xy cisinfe] + B icos[] ooi (13)

Based on past temperature records, variables A, B, and C, along with the shift p, will
be determined. In equation (12)(Alexandridis A. K. and Zapranis A. D, 2014; Benth,
F.E., & Saltyt-Benth, 2005)

62 =c+ Yl ¢sin[=— +Z] 1clcos[z‘;r;] ............................ (13)

365]

Variables A, B and C and the shift p will be calculated based on historical temperature
data.

In equation (12), Alaton et al. (2002) concentrated on the seasonality, trend and the sine
function's shift expression. Atalon et al. (2002) modelled the long-term temperature
model, which may be less applicable in the short term. They made the assumption
known as homoscedasticity that variance would be constant over time. However,
according to (Niyitegeka & Tewari, 2013), empirical evidence has disputed this
supposition. When calm and volatile periods are observed in time series, volatility
clustering is known to occur, making the variance at least appear predictable. Since
temperature data is a time series, it may display significant auto-correlation. Hence, we
propose to extend this (Atalon et al., 2002) by relaxing the assumption concerning &;

to (12) and allowing &; to be autocorrelated. So it will be

T/ = A+ B + C; sin(wt) + C, sin(wt) + &, &|F,_1~N (0, ?) (14)

Assume ¢; follows the GARCH model (Generalized Autoregressive Conditional
Heteroskedastic). According to (Niyitegeka & Tewari, 2013). GARCH forecasts future
variability and addresses the issue regarding heteroskedasticity, or the time series' non-
linear variability. The conditional variance can depend on prior lags in the GARCH
model, which uses the maximum likelihood method. The following is how the

conditional variance equation is written.

0f =g+ X BOAy F XL EE L

(15)

This replaces equation (13) where a,, has been substituted by c. o is the volatility at

time t. a; has also been substituted by c; sin(wt), and S has been substituted by
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c; cos(wt) .e?_, is the previous period’s squared error term. o/, is the previous
period’s volatility.
Proposition 3.2. (Brody, 2002). If T/® = E[T,], the process
dT; = [a(TM = Ty) + %] dt + o, dW, revertsto T{™.
‘ad
Proof.: Let Z, = eh @ S(TM™ —Ty)
Ito’s lemma

Lad ad
dZ, = eho % TMdt + ae® (T/™ — T,)dt- eJo ¥45dT,

t
= efo ads[(Ttm + a(Ttm - Tt)dt - ((l(Ttm - Tt) + Tgn)dt - O-tth
t
t ds
WZy=1Zy— f elo ¥ aw,
0

t t
el (Tm —T)) = T3 — Ty — [ elo“%.aw;

Now T{" — T, = ¢ gives

t
t t
T —T, = _efoadsfefoadso.sdm/s
0

t
¢ ¢
TtZTtm-FeandeeandSO'SdM/s
0

= E[T,] = T™ -

3.5 Pricing weather derivatives in an incomplete market

The weather derivatives market is an example of an incomplete market because the
fundamental variable temperature cannot be traded. In order to establish distinct pricing
for such contracts, a risk's market value is added. The cost of risk is assumed to be
constant to maintain simplicity. Furthermore, the tick price is determined at $1 per
degree day, and the risk-free interest rate, r, is assumed to remain constant. Typically,

a risk-neutral valuation approach is used to price financial derivatives. According to the
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financial theory, a contingent claim's cost F, which is based on stochastic variable I,

can be determined as follows (Dzupire et al., 2019; Xu et al., 2007):
F =Eo(D,Wr() (16)

I can be a traded asset, like a stock, or untraded, like a weather index. At expiry time,
T, W represents the payoff of the derivative, and D represents a discount factor e~
with a free rate. The subscript Q indicates that the expectation of the derivative payoff
is to be calculated by replacing a real-world probability with risk-neutral probability
measurements, and E denotes an expectation conditional on the information now

available (Dzupire et al., 2019)

Equation (18) can be written as
—rT aQ
F=e EP(E wr (1)) (17)
% shows the Radon-Nikodym derivative of Q concerning P.

With the change of neutral measure, the stochastic process of I becomes a martingale.
If the stock moves with a geometric Brownian motion, reducing the drift to a risk-free

rate can lead to a change in measure.

However, the market is insufficient if indexes cannot be traded since a self-financing
portfolio cannot reproduce the derivative. As a result, it is impossible to use no-
arbitrage pricing methods for weather derivatives because we cannot create a portfolio
free of risk that combines weather index and derivative (Xu et al., 2007). Additionally,
the no-arbitrage criterion does not produce a distinctive pace because there are
numerous martingale measures. Therefore, only contingent claims secured by bonds

may be achieved (Dzupire et al., 2019). Formally, we have a range

[tnte™"" Ep (G Wr (D), Sup e Ep (g, Wy ()] (18)

The interval in equation (14) is exceedingly significant and, therefore, useless, where
Q indicates the set of all equivalent martingale measures (Xu, Wei, Martin Odening,
2007). By engaging in dynamic trading, the investor seeks to maximize the anticipated
utility of the final wealth and minimize risks associated with the uncertain reward in an
incomplete market. The objective is to find a method that maximizes the expected
utility of terminal wealth under the physical measure while minimizing risks as

measured by a risk measure.
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3.6 Temperature barrier option pricing

A barrier option operates similarly to a standard option until the underlying asset's price,
X, crosses a predetermined barrier, B (Primajati, 2020). The feature of the selection is
either a knock-in or a knock-out. If an option is knocked in, it has no value unless the
asset price passes the threshold. When an option is knocked out, it loses its value once
the asset's price crosses the threshold. The barrier must be crossed in the direction
indicated by the arrows going up and down. In addition to X and B, the strike price K,
interest rate r, time to maturity T, dividend rate g, and volatility ¢ are the input

arguments utilized to determine the value of barrier options.

Barrier options are one of the most frequently traded derivatives on the financial
markets, claim (Wang & Wang, 2011); they stand out from standard solutions thanks
to their unique qualities. The fact that barrier options are typically less expensive than
standard options is one reason for the payoff; the asset price must pass a particular
threshold first. The third factor is that barrier options better-fit risk hedging

requirements than conventional options.

Farmers may buy a call option if the price is anticipated to be higher. Sun (2017) and
Kooten (2015) provide the payoffs for the call contracts from the purchasers'

perspective.

0, x<k
P(x)cau = {D(X kx> k (19)

P(x) denotes the option payoff, D is the tick size (the amount of money for each
weather index unit), and k is the strike (trigger) value. Equation (19) also is the payment
of the barrier down and out call option for the barrier temperature option, where the k

is now the barrier level.

For barrier it is

P(x) _{ 0, x<kandx < B (20)
U\ p(x—k),x>kandx>B,0<t<T

B is the barrier level, and x is the weather index (GDD).

The GDD option depends on the sum of the GDD across the growth season, where each

temperature process follows the Gaussian process, represented by T;~N (s, v;). We
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can proceed once we get the conditional mean and variance of the GDD. The

conditional mean and variance of GDD,, for time t < t; can be calculated as follows:
GDDp~(N (tty, 07)
Where,
Uy = EQ[GDDnU's] = ?=1EQ[Tti|Tt] — k, (21)
02 = varQGDD,|F,] = ¥, var T |F] + 2 X X icj cov®[ Ty, Tyj1|Fe]
(22)

The anticipated return is the following, assuming a normal distribution for the weather

indicator used in a financial instrument:

Ep = J, f(x) p(x)dx, (23)

Where p(x) is the payment associated with the financial instrument for the potential
outcome, x is the weather index. This x, at some point, will reach the barrier level. The
weather index's probability density function (PDF) is denoted by f(x). When the

weather index is transformed into a regular normal distribution, let z = % and the

expected pay-out function is as follows:

E, = [ ¢(@)p(2)dz =2 [} p(2)p(x)dx (24)

From equation (24), ¢(z) signifies the PDF of the typical normal distribution, and o is

the standard deviation of the weather index.

Inserting the payoff function for the call contract in the corresponding uncapped call
options with closed-form functions are as follows when the expected pay-out function
is entered:

Epca == Jy Dx— k) (%) dx = Do (%) +D(u—k) [1 o ('%u)]
(25)

Multiplying the above by the difference of x and B (x — B) gives us the call payoff of

the barrier call option to be

= (x—B) [Daq’) (8)+pu-rw)[1-o (’%")” (26)
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Proposition 3.3: Therefore, the cost of the GDD call option at time t < t; is as follows
(Hung-Hsi Hua, 2008; Patricia, 2021; Peter, 2002; Sun, 2017):

c(t) = e T DEQmax(H,, — k, 0)| F,]
= e_T(tn_t) fko:(x —_ k) an(x)dx

_(k—pn)?

_ _ k—pn n 02
= e (u, — k) (- . )+ e ) 27)

Here t,, is time to maturity. The normal distribution's probability density function is
fu,» and @ represents the cumulative distribution function for the standard normal

distribution.
Proposition 3.4 The price of the down and out barrier call option is

_(k—un)?

_ _ k— n n 202
— o~ T(tn=0) {(.Un — k) (_ G_”) + %e 7 }(x —B) (28)

n

Proof of Proposition 3.3

We know that H,, = x~(N (i, 02). Let u = (x;un)'

X
then du = —,dx = o,du,and x = u, + o,u.
O—Tl

f (x =) fir (V) dlx = f % fi ()dx — k f fu (Odx
k k k

It is simple to calculate the right-hand side's second term in the manner shown below:

k j:an (x)dx = k (1 —k kaan (x)dx)

:k<1— d:(k;n””))

_k_ﬂn)

On

= o

The first term fk°° x fu, (x)dx can be calculated as the follows:

00 00 x _(k_ﬂg)z
f fon(x)dx=f e 20 dx
k

k /270,
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e 2 du

;_n \/2moy,

C Up +oqu _u?
k—un

00} 1 _EZ
= .L_#n— (up +o,uw)e 2 du

V2r

Oon

*© 1 _u? @ 1 _u?
=ﬁ(_#n Up—— € 2 du+ﬁ(_unanu—e 2 du

_ V2 — V2w
k — Un On @ _u?
= )] (— ) + f ue 2 du
Hn On V 2T %
— _(k—pn)?
= Un® (—k ,un> + i e 20%
On vV 2T

The following can be used to generate the second term of the final equation:

® _u? _u?
J;{_#nue 2 du=—e 2 |k;#n
on n
o k—p 0 —M
Therefore, [*(x — k) fy, (X)dx = (un — k)P (— o—n) + e R n

If equation (27), which determines the call price c(t) is used, then

6ct

ﬁ>0
ﬂ>0 (29)

dop

The claim above states that a rise in the mean u,, will increase the price of temperature

calls. Furthermore, the call prices will rise in proportion to the standard deviation o,

To summarise this chapter, we have seen that the temperature and pricing model has
been modelled. Hence, in the next chapter, we will see whether these models predict
the future temperature and price temperature derivative as a way of hedging maize crop

yields using the given temperature data.
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CHAPTER FOUR

RESULTS AND DISCUSSION

This section analyses and discusses analyses and discusses the study's objectives and
results. The interpretation of the data was also tied to the literature reviewed. The data
has been analysed mainly by R. Hence in section 4.1 we look at descriptive statistics.
In section 4.2, we look at trend and seasonality followed by estimation of mean
reverting speed in section 4.3. Volatility of the temperature process has been calculated
in section 4.4 and lastly, we look at hedging maize crop yield using modelled pricing

model.

4.1 Descriptive statistics

This study examines the daily average temperature data recorded in degrees Celsius in
Malawi's Kasungu area. The data spans the years 1990 to 2020, and 11315 data series
are included. The temperature readings on February 29 of every leap year have been
dropped to preserve consistency over time. Kasungu district is located in Malawi's

central area.

A significant sample, which risks estimating parameters being changed by dynamics
that no longer represent future temperature behaviours, including urban influences, is
considered a worse sample to research temperature dynamics than 31 years. On the
other hand, if the period is short, crucial dynamics may not be shown, which could lead
to a flawed model (Alexandridis & Zapranis, 2006).
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From our data set of 31 years, we plot the average temperature graph as shown in Figure
4.1. This graph shows the average temperature of Kasungu district from 1990-2020. It
illustrates the seasonality in average daily temperature movements, indicating its
similarity to a sine function in particular. The daily average temperature moves
repeatedly and regularly through periods of high temperature (summer) and low
temperature (winter). From our data set of 31 years, we plot the average temperature
graph as shown in Figure 4.1. This graph shows the average temperature of Kasungu
district from 1990-2020. It highlights the seasonality of daily average temperature
changes, mainly how it resembles a sine function. The daily average temperature

fluctuates often and predictably between hot summer and cold winter months.

Temperature for Kasungu District

Average Temperature
10 15 20 25 30 35

| | | | | | |
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Year

Figure 4.1 shows a stochastic model of average daily temperature in Kasungu from 1990 to 2020.

The use of the Ornstein-Uhlenbeck procedure to mean-revert simulate temperature
behaviour is justified in light of seasonal fluctuation and long-term trends in
temperature. The daily average temperature variation will gradually return to the mean
over time. The Anderson-Darling test was used to determine whether the varying
temperatures for the Kasungu district were average. The hypothesis was rejected with
an A = 0.83279, P.value = 0.03181. Although it is not normally distributed, we shall
treat the daily variation in temperature as a Brownian motion. This is the case because
when the histogram is used to check the temperature difference's normality, it finds that

it is roughly average. This agrees with what (Wang et al., 2015) state that when data is
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enormous, then it has to be approximately normal and Brownian motion should be

considered. Figure 4.2 illustrates that the temperature differential is roughly average.
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Figure 4.2: Histogram of temperature differences of Kasungu district, Malawi.

The stochastic differential equation characterizes the motions of the process if we

indicate the average temperature at the date t by T; in equation (4) of which is

where W; is the Brownian Motion, a; is the volatility square root time of the
fluctuations, T{™is the long-term mean, and k is the mean reversion rate. To better

understand the temperature dynamics, we computed the descriptive statistics of the
data, as provided in Table 1.
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Table 4.1: Descriptive statistics of temperature for Kasungu

Maximum 34.7
Minimum 9

Mean 21.88196
Median 22.1

Mode 23.25
Variance 8.504897
Standard Deviation 2.916316
Skewness -0.1304493
Kurtosis 2.961842
Coefficient of variation 13 %

According to a descriptive evaluation of the information, the modal temperature is
23.25°C, while the average daily temperature is 21.8833°C. The coefficient of variation
(CV) is the difference between the standard deviation and the mean. The mean
dispersion becomes more pronounced with an increase in the coefficient of variation.
Usually, it is expressed as a percentage. The estimated average of 21.88330C (in our
example) is shown to be representative of the data by the coefficient of variation. The
CV of 13% demonstrates the data's minimal variability. As a result, a dataset's estimated

average of the values is more reliable.

The observed distribution exhibits a small amount of leftward asymmetry, with a
skewness (asymmetry coefficient) smaller than 0 (-0.1304493). The data's median
temperature is 22.1°C, whereas the mean is 21.88195°C, making the data's mode,
23.25°C, more excellent. The mode must be more significant than the median and the

arithmetic mean for left-skewed asymmetry, which is proven (Kovac, 2020).

The size of the two tails' combined lengths is measured by kurtosis. It calculates how

likely the tails are. The amount is typically contrasted with the normal distribution's
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kurtosis, which is 3. Our data are typically distributed because the observed kurtosis is
2.961842, which is roughly 3

4.2 Trend and seasonality

The temperature process has a seasonal trend, as seen in Figure 4:1. Consequently, we
create a seasonal mean that also considers patterns as

27T

T{" = A+ Bt + Csin(wt + p), w =

where t is a calendar year's range of days (1-365). T{" is the predicted temperature for
a given day in 2021. A + Bt reflects the tendency brought on by urban effects and
global warming since extreme temperatures do not necessarily occur at the beginning
and middle of the year. C, which stands for amplitude, determines when we feel the

highest or lowest temperature.
Using trigonometric formulae, we have
T = A + Bt + Csin(wt + p)
= A+ B + C; sin(wt) + C, sin(wt)

Where

— ’2 2
c= |c]f+cy

o)
p = arctan (—) -7
1

To determine the parameters A = {4, B, ¢y, c,} that solve the optimization problem
min,||T™ — X(t)]|, we therefore fit T/™ using least squares methods. X (t) is the data
vector. We present estimated values for parameters in Table 4:2, all of which suggest

they are significant. When the estimated values are inserted into 7/"we get

T/ = 22.04 — 0.0000286¢ + 2.89929sin (;%t +1.60807) (30)
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where A is the coefficient, set to 22.04 °C and is computed as the average daily
temperatures between 1.1.1990 and 31.12.2020. Coefficient B, which has a value of -
0.0000284t°C, represents the expected rise in the annual average temperature in 2021
compared to the average of the average temperatures for the base period (1990-2020).

Given that it assumes the highest average daily temperature in 2021 will be around
24.93929 °C (22.04 °C + 2.89929 °C) and the lowest will be approximately 19.14071
°C (22.04 °C - 2.89929 °C), the value of Factor C is 2.89929 °C, which is realistic and
predicted.

As a result, the average daily temperature, previously computed at 22.04 °C, can be
anticipated at the end of March (2.85 months after the year's start), and all average daily
values beginning on January 1 should be lower than 22.04 °C with an upward tendency.
The sine function shift is 1.60807, or roughly three months of a year, in terms of the
sine function, or 2.85 months. In March, the yearly average temperature for the months

that are not susceptible to significant temperature swings changes.

The predicted values for 2021 were derived using the O-U procedure and presented in
Figure 3:9 by substituting the 365 calendar days for t.

Table 4:2. Estimated parameter values for the seasonal mean

Parameter Estimated Std Error t value Pr(>[t])

A 2.204e+01 3.600e-02 612.248 < 2e-16 ***

B -2.864e-05 5.512e-06 -5.196 2.07e-07
N—

C1 -8.671e-01 2.546e-02 -34.058 < 2e-16 ***

C2 2.986e+00 | 2.545¢-02 | 117.331 < 2e-16 ***
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Figure 4:3 shows the daily average temperature and predicted season means.

Figure 4:3 depicts the yearly mean and the daily average temperature. The mean

reasonably fits the data.

4.3 Estimation of mean reverting speed

According to Patricia et al. (2021) & Wang et al. (2015), derived the most
straightforward Ornstein-Uhlenbeck process, often known as a mean-reverting process,

is as follows.

arf™
dt

Here, T{™ is the normal level of T, to which T; tends to revert, and « is the reversion

dT; = [a(T{* — T;) + —==] dt + o, dW, (31)
speed. Remember that the difference between T, and T/" determines the anticipated
change in T;. If T;is higher (less) than T/™ is more likely to decrease (increase) over
the following brief period. Therefore, despite satisfying the Markov characteristic, this
process lacks independent increments.
If the value of T, is currently T, and T; is calculated using equation (18), then its
anticipated value at any point in the future is given by

E[T] = T/ + (To — T/e ™ (32)

Also, the variance of (T, — T{™) is
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VI~ T = (1 - e72%) (33)
We return to the easy O-U (mean-reverting) approach of equation (32) for the derivation
of equations 32 and 33. Set T{™ to 0 to make the calculation more straightforward, which
results in the equation: dT, = —aT; dt + o:dW; (34)

We said that equations (32) and (33) provide the text's mean and variance of T;. To
support this assertion, we can apply the Kolmogorov forward equation.

Write M (6, t) = E|e~T|as the moment-generating function for T;

= [ ¢ (To, to:T, 00~ dt (35)
Then,
oM © dp _
e f_ooa—(fe oTqr (36)

The Kolmogorov forward for this process is

09 _ 1 _0°¢ .09
5 =39 32 aTat+a¢ (37)

The following equation for M (0, t) is obtained by substituting this for Z—‘f in equation

(17) and integrating by parts:

1 5,2 oM _ oM
209 aeae_at

(38)
Boundary conditions must be met in order to solve this partial differential:
M(0,t) = 1,—My(0,0) = T, and
V[To] = Mgo(0,0) — Toz =0
Hence, the equation has the following equation

MO, 1) = e50 |1 - Topeet + (573 - Z—a) 622t (39)

Using the fact the E[T,] = —M(0,t) and E[T?] = My (0, t)verifies equation (32) and
33 m

The expected value of T; converges to % as seen from these formulae. Additionally,
as a » o, V[T;] — 0, this denotes that T, can never stray from T/™, not even
momentarily. In the end, T, becomes a straightforward Brownian motion and V[T;] —
a?. The first-order autoregressive process in discrete time is represented by equation
(32) in continuous time. Equation (32) is the limiting case for the following AR (1)

process as At — 0.
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T, =Ty =T —e 2 + (72 = DT,y + & (40)

where €, has the mean of a normal distribution zero and a standard deviation of o,and
02 =2 (1— e2) (41)

Therefore, by doing the regression and utilizing discrete temporal data (the only data
ever accessible), one might estimate the parameters of equation (34):

Tt - Tt—l =a + th—l + Et (42)
Afterwards, calculating " = — %,
a = —log(1 + b) (43)

And

_ log(1+b)
7= O—t\’ (1+b)2-1 “44)

where a; is the regression's standard error.

To find this mean reversion in our case, we run the ACF of the decomposed data. The
ACF of our data is our b. The same can also be found by running a regression. b =
—0.2137. Substituting this into (43) gives us the mean reversion of 0.2404. Fitting in
mean reversion and a; in (44) gives us 0.8943.

Kasungu's average temperature data was decomposed under the additive model to find
the mean reversion. Figure 4:4 shows the decomposed plot of the statistics on
Kasungu's average temperature. Figure 4:5 shows the Auto Correlation Function
(ACF) plot.
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Figure 4:4: Decomposed plot of the Average Temperature of Kasungu
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Figure 4:5: shows the Auto Correlation Function (ACF) plot

There are significant autocorrelation values for ACF for several lags, which may call
for adopting more advanced autoregressive models. The ACF also reveals the presence

of seasonality in both the residuals and time dependence in the variance of residuals.
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To extract the g7 from the residuals. We must first analyse and simulate the random
noise process—but testing for stationarity Augmented Dickey-Fuller (ADF) test, the
Dickey — Fuller = —7.3612, P.value = 0.01. Since the P-value is less than 0.05, we
cannot rule out the possibility that the data are stationary and that mean reversion is

constant.

Calculating the volatility of the temperature process

The residual graph in Figure 4:6 below shows that the residuals are normally
distributed, as many points do not vary from the regular line.
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Figure 4:6, a residuals graph.

According to the methods outlined in (Benth, & Saltyt-Benth, 2011; Dzupire et al.,
2019; Wang et al., 2015). the volatility is extracted. After that, the residuals are split
into 365 categories, each representing a day of the year for the last 31 years (1990-
2020). Then, we calculate the mean of the squared residual in each set of expected daily
residuals:

of = E[(0&)] (45)

As seen in the figure below, these numbers are used as observable estimates of the daily
variance based on years of observations for a specific day.
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Figure 4.7, Empirical volatility
As can be observed, the wet season has bigger temperature fluctuations than the dry

season. In order to derive the volatility model, we fit the data using the volatility model
(44)

o2 = —0.02603 — 0.17421 sin [g (45)

Figure (3:7) compares the estimated model and the empirical volatility and

demonstrates how closely the estimated model matches the empirical model.

Comparing the actual average temperature to the outcomes of the stochastic models
under ARIMA to determine how well the model performed. The calculated Root Mean
Square Error (RMSE), which evaluates how well the temperature model performs, has
a value of approximately 1.158505, and the Mean Performance Error (MPE), which
compares the actual temperature to temperature models, was roughly -0.3110809. This
means that the model is over-forecasted by around 0.311%. Hence, figure 4:8 below is
the graph of the forecast temperature for backwards. This has been done on the
decomposed temperature without seasonality and trend (random). Figure 4.9 shows the
forward forecasted temperature from 2021 to 2024 of Kasungu district using our

temperature model. These forecasted temperature figures tell that no matter the
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situation is, this model can support the option provider in setting the derivative price

for a specific time frame regardless of anything.
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Figure 4:8. Shows the backward forecasted temperature of Kasungu district.
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Figure 4:9. Shows the forward forecasted Temperature of the Kasungu district.

The study results prove that the average temperature has increased since 1990. This is
evidenced in Figure 4:5, which tells us a story of an increase in average temperature.

The results show that there will be a slow but steady increase in temperature. This
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scenario does not offer a positive outlook for agriculture production since they are
vulnerable to increased temperature. In relation to (Quindala, 2021), this temperature
rise will lead to low maize yields as it says 1°C will lead to a 10% decrease in crop
yields. As the case with this study where it looks into agriculture done during irrigation
which is more vulnerable to high temperature since according to (Means, 2018) we will
not experience raindrops to control air temperature. Hence, with this rising temperature
that cannot be controlled, the idea of hedging crop yield against extreme temperatures
during irrigation will help farmers have something at the end of the farming season.

According to our model, if the parameters remain unchanged in the next 30 years or so,
the results of this study provide an early view of possible temperature patterns. As
stipulated earlier, temperatures of 38°% and above and 10% and below can trigger maize
sterility. These forecasts can particularly threaten agriculture. This tells us that
agriculture done during irrigation is much more vulnerable. This can help the
government and non-governmental organisations devise contingency measures. One of
these measures is to consider taking temperature derivatives to hedge maize crop yields

into agriculture policy into this 2063 agenda.

This is why farmers should use weather derivatives to protect their yields from rising
temperatures. This is especially true for Malawi as one of the developing nations, where
a sizable section of the populace still depends on agriculture and where government
insurance and other support forms still need improvement. Indeed, this study reveals
what other research has revealed that, for instance, farmers in central and northwestern

China are drawn to weather-indexed insurance (Sun & Kooten, 2015).

4.5 Hedging maize crop yield

Hedging is an advanced risk management strategy involving buying or selling an
investment to help reduce the chance of loss of an existing position. When purchasing
call options, farmers use temperature as the underlying asset. A call option gives its
owner the right to pay a premium and purchase the underlying asset from the provider
for the specified period at the specified price (Berislav & Matej, 2020). If the buyer
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expects unfavourable weather that could increase the price of derivatives due to
monetary gain generated by the set price the supplier has to offer the customer, they

may decide to buy call options.

The monetary value of each GDD and the weather derivative is calculated based on the
index's value. The derivative buyer wagers that his company will experience an
unfavourable change in air temperature throughout the duration of the contract. The
provider will pay the buyer a set fee if his prediction comes true.

Weather derivatives must be introduced as a contingency mechanism to assist farmers
in hedging possible losses in maize yield due to climate change, particularly
temperature fluctuation. The paper offers temperature weather derivatives with
temperature as their underlying index. Temperature is one of the most critical elements

affecting the variability of maize output.

Now, taking from Proposition 3.3: Therefore, the cost of the GDD call option at time

t <ty isas follows:
c(t) = e T DEQmax(H,, — k, 0)| F,]

— o—T(tn=0) fk‘”(x — k) fu, (x)dx

_ (k=pn)?

— —T'(tn—t) _ _ k_ﬂn On 0-2 I
- ¢ {(kn k)d)( Un)+\/(27r)e ony

C(t) is the price or premium that the hedger (the buyer of a call option) needs to pay

for the contract, r is a risk-free periodic market interest rate, t is the date the contract is
issued (purchased), and t;,,, is the date the contract is claimed or the expiration date.
E? is the expected payoff based on the predicted historical mean temperature value.
The seller of the option would expect a reward for taking a risk loading, which is often
between 20% and 30% of the payoff payoff (Kooten, 2015). In the current application,
we set the risk loading at 20% of the expected payoff payoff of the contract.
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From the forecasted temperature of 2021, the GDD has been calculated from August 1
to December 31 since this is the time when maize crops are mainly irrigated. It has been
observed that the temperatures are too low in early August. This gives the farmer insight
into how to hedge their crop yield against low temperatures. The temperatures are also
high in November and December; this also gives a farmer insight into how to hedge his

or her crop yield against high temperatures.

To price the financial weather derivatives, we assume a tick size D = $1 and risk-free
interest rate r = 0.08, At = % year(August 1 to December 31, 2021), making 153 days.
August to October is hot-dry season and Nov/Dec to March/April is hot wet dry season
in Malawi. But this study assume the stated date by considering the effects of climate
change where most part of Malawi are still dry up to mid-December. Our risk loading
b = 20%, p = 12.68°C. The forecasted GDDs and standard deviation for 2021 are
1937.43°C and 1.830C, respectively, and are used to calculate the actual premiums for

the contracts.

Table 3: Specification of GDD options for the year 2021

Items call options
Weather index GDD(x)

Strike Level 12.68-2*1.83
Barrier level B=18%c

Tick Size (D) $1

Premium $3.50
PayoffPayoff Max(GDD-K, 0)
Issue Date August 1 2021
Maturity date December 31 2022
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The strike value is u — 20 for above 2 standard deviations of the forecasted GDDs; this
2= % then ¢(2) = 0.9772 and ®(2) = 0.9772. The premium is calculated from

equation 33. The premium is $3.50 because we assume the GDD is above the barrier
level with one difference. This is where the barrier option is equal to the vanilla option.
In this case, the barrier option does not knock out. Hence, it gives the holder the right
to buy the underlying asset since it does not exceed a predefined level over the option's

lifetime.

The premium has been calculated to be $3.50 because we assume that the GDD is above
the barrier level with one difference. This is where the barrier option is equal to the
vanilla option. In this case, the barrier option does not knock out. Hence, it gives the
holder the right to buy the underlying asset since it does not exceed a predefined level
over the option's lifetime. Now, if the GDD is within the barrier level, the farmer will
not have to pay the premium of $3.50 because the option is invalid. On the same note,
the farmer will have to exercise his right by paying the premium of this calculated
premium when the GDD exceeds the barrier level. In return, the farmer gets paid off,
which is the difference between GDD and barrier. This will be taken daily within the

contract.

In summary, this chapter shows that the corrected data fit well into the modelled
temperature model. Using the model, we can predict future temperature indices. Taking
the future temperature index (GDD) into the pricing model can also hedge maize crop

yields.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

This chapter examines the conclusion of this study in section 5.1, the recommendation
in section 5.2, and the further studies in section 5.3.

5.1 Conclusion

In Malawi, most people, especially small-holder farmers, rely on the agricultural sector
as their primary source of income. A trustworthy and effective insurance product
(weather derivative) is required for small-holder farmers and stakeholders because this
industry is susceptible to climatic shocks. Due to high basis risks in the product's pricing
and design, most farmers would prefer to purchase this product. Because weather
indices are not traded assets, the market for weather derivatives is a classic incomplete
market, making it impossible to price weather derivatives using traditional no-arbitrage

techniques like the Black-Scholes formula.

Given that maize is a staple crop for farmers in Malawi, it was decided to utilize maize
yield as a proxy for crop yields. Each weather variable was given a significance score
based on the feature's importance before being included in the ensemble learning
model. The study demonstrates that the average temperature was the most critical
weather variable for developing weather derivatives. This reduced the risk associated

with the product design foundation.
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5.2 Recommendation

With the agenda of Malawi 2063, this study is good enough to be incorporated into
agriculture policy as it presents a way to protect farmers from financial consequences
due to extreme temperatures. This will bring an increase in the income of individual
farmers, thereby mitigating poverty. We assume there is no correlation between the
tradable asset and weather indexes, considering that we are interested in how a farmer
can hedge temperature-related weather risks. The pricing model developed can be used
in the agriculture industry where a farmer is interested in hedging weather risks due to
temperature. It can also price weather derivatives in other weather-related industries
affected by temperature. The results of this study can help insurance providers and the
government to design products that can help the farmers. Projecting future temperatures
and growing degree days is uncertain, so farmers wish to hedge against weather risk.
However, markets must provide farmers with attractive, practical hedges representing

producers' risks.

With efficient and reliable pricing models, basis risks would decrease. As a result, the
farmer would be more willing to pay for the contracts and trading activities in the

market for weather derivatives.

5.3 Further studies

Further research should be conducted on barrier option pricing of weather derivatives
under the basket. This pricing should consider both the lower and upper barrier of the

weather index, which may lead to lower yields.
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ABSTRACT

Agriculture production yield varies with weather changes. This causes farmers to incur
losses. For instance, extreme temperature leads to low maize yield. This study describes
incomplete temperature weather derivatives in agriculture markets and applies risk
management hedging techniques. It focuses on hedging crop yield against extreme
temperatures during irrigation farming, which is done without a greenhouse. This study
primarily aims to hedge maize crop yields using temperature derivatives. This is
achieved by (i) developing a daily average temperature stochastical model. (ii) Deriving
statistical properties of the model based on the historical data of 31 years of our sample
space (1990 — 2020 Kasungu District Temperature data). (iii) Pricing temperature
derivatives to hedge maize crop yield. To achieve this, a stochastically Ornstein-
Uhlenbeck process with the time-varying speed of reversion, seasonal mean, and local
volatility that depends on the local average temperature was proposed. Based on the
average temperature model, down and output, option pricing models for average
temperature and growing degree day are presented. The study's findings suggest that
the temperature will rise gradually but steadily. This scenario does not offer a positive
outlook for agriculture production since a temperature rise can damage it. The premium
for weather derivative options has been calculated as $3.50 per GDD index contract.
Farmers and agricultural stakeholders can hedge their crops against extreme
temperature-related weather risks with these models. In line with Malawi's 2063
Millennium Development Goals (MDGs), this study acts as an eye opener for the
government to put a policy on whether derivatives should be practised in our country
hence, increase cash holding by improving the situation of the farmer and country.
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1. INTRODUCTION

Agriculture is the backbone of the Malawian economy (Ministry of Agriculture, 2016)
It is an important sector that generates income for the majority of the population, helps
Malawi earn money through exports, and supplies the majority of manufacturing
industries. A large percentage of smallholder farmers in Malawi primarily get their
income from the agriculture and agribusiness sectors, which make for an important
portion of the country's key economic activity. Most of these farmers grow maize, soya
beans, tobacco, rice, and ground nuts. Maize is the main crop and it is the staple food
in Malawi. Smallholder farmers grow maize for food and they sell the excess. Low
yields of maize are a yardstick of hunger in the country. According to reports, it
contributes to more than 25% of Africa's GDP and roughly 70% of the labour force.
(Samuel Asante Gyamerah, 2019). According to Ministry of Agriculture, (2016), It is
reported that agriculture sector support about 85% of the population in terms of
employment. It accounts for more than one quarter of the Malawi gross domestic
product and account for 90% of the foreign exchange. As a result, the development of
the economies in Africa, of which Malawi is a member state, has agriculture as one of

its most significant and largest fields.

Agriculture production in Malawi is heavily dependent by weather elements like
rainfall, temperature, wind etc. any variations in these elements greatly affects harvest.
For instance, the production of maize is greatly influenced by the weather. The stages
of plant growth affect how each crop species responds to temperature variations. The
limits of visible growth are determined by a specified range of maximum and minimum
temperatures for each species. Extreme temperature makes it difficult for maize to
develop. Extremely high temperatures during the reproductive stage will have an
impact on the viability of the pollen, the process of fertilization and development of
grains or fruits. (Hatfield, J. L., & Prueger, 2011, 2015). The yield potential of initial
grains or fruits will be reduced by repeated exposure to extremely hot or cold conditions
during pollination. However, it's possible that the most detrimental effects of acute
exposure to strong events will occur during the reproductive stages. Because this

measure is the one that both producers and consumers are most concerned about, the
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effects of climate change are most noticeable in maize crop productivity. Maize grows
well under temperatures of 21% to 27°%. According to Hatfield, J. L., & Prueger, (2015)
the base temperature below which crop growth cease is 10% and above 38° C.

This underlines the significance of contingency planning, which includes setting up
backup funds, strengthening currency reserves to protect against external shocks, and
validating the usage of weather insurance (Dzupire et al., 2019). Similar to how
insurance against poor crop yields can be used at the family level, weather derivatives
offered to small farmers may do the same.

According to Islam and Chakraborti, (2015), derivatives are described as “financial
instruments that are linked to a specific financial instrument or indicator or commodity
and through which specific risks can be traded in financial markets in their own right.
The value of a financial derivative derived from the price of an underlying item, such
as an asset or index. Unlike debt securities, no principal is advanced to be repaid and
no investment income accrues.” The underlying asset may take on a variety of shapes,
including: goods such as grain, coffee, and orange juice; precious metals such as gold
and silver; currency exchange rates; and bonds of many kinds, such as medium- to long-
term transferable debt securities issued by governments, businesses, etc. Finally,
securities of corporations marketed on reputable transactions of stocks and Stock Index,

including shares and share warrants.

Financial derivatives are essential for controlling the financial risk that corporations
face. All throughout the world, they have been extremely successful, widely used, and
valuable advances in the capital markets. Financial derivative markets have recently
been discovered to be operating actively in both developed and developing nations. The
principal application is hedging, often known as a function of price insurance, risk
shifting, or risk transference. They give traders a means through which to manage their
risks or shield themselves from unfavourable changes in the value of the underlying
assets they work in. For instance, a farmer may take the market's risk and sell a futures

contract to offset the risk.

Due to the crops' frequent exposure to unfavourable weather, crop production is a
difficult endeavour which temperature is amongst of it. Crop production rate is

significantly influenced by weather and climate conditions. However, restrictions have
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no place when agricultural production plays a significant role in ensuring global food
security. As a result, farming in a controlled environment is now practiced as a result
of the quest for alternatives (Ines, 2017) . One of the fundamental types of farming in a
controlled environment is greenhouse farming. Effective management is made possible
by greenhouse farming, which also lowers hazards brought on by adverse weather
conditions. (Ines, 2017). It manages heating to suit the crops. Since greenhouse are

costly, cannot be managed by most farmers.

Although the use of financial weather derivatives in agriculture has not been as
widespread as it is in the energy industry, studies have examined the use of historical
data to create heat or rainfall index-based weather derivatives (Sun, W., & Lou, 2013).
For agriculture production the relationship is not always as straight forward since
differences in products, crop growth phases and soil textures just to mention a few have
different responses to the temperatures. Baojing & Kooten,( 2015) concentrated on
pricing using financial derivatives to protect the output of corn crops by contrasting
several approaches to calculate the price of weather derivatives using Growing Degree
Day (GDD). Patricia P. et al., (2021) modelled the daily mean temperature and created
the Growing Degree Day (GDD) European put option for rice in Laguna.

These studies did not put into consideration that such agriculture can also be done
through irrigation where temperatures are not controlled, as compared to agriculture
done in the rainy season where the rain drops control the air temperature (Means, 2018).
Hence this study focus hedging crop yield against extreme temperatures during
irrigation farming which is being done without green house as it is prone to extreme

temperature that affects their crop yields.

Four sections make up the structure of this study. The temperature-based weather
derivatives are covered in section 2. Hedging maize crop production is covered in
Section 4 after Section 3's talks of simulation and parameter estimation. The research

was finally concluded in Section 5.

2. TEMPERATURE-BASED WEATHER DERIVATIVES
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2.1 Daily average temperature data

The data in this study is from Kasungu district. It has been chosen because is the top-
list district that grows maize both during rainy season and dry season under irrigation
which feeds a good per cent of Malawians (Phiri, 2016).This means that low maize

yield in this district will lead to hunger and hence affect the economy of the country.

From 1 January 1990 through 31 December 2020, historical data on daily minimum
and maximum temperatures were gathered from the Department of Climate Change and
Meteorological Service's headquarters. This sample size of 31 years’ period will ensure
that we are capturing the overall long term trend to have a real picture to forecast future
temperature. The missing data has been treated by either finding the average
temperature adjacent to the missing data or last observation carried forward and next

observation carried backwards. All the leap years have been dropped.
2.2 Temperature indices

The temperature information collected from a given station in a given area is the
foundation for temperature indices. If T/"** and T/™" are the highest and lowest
temperatures recorded at a meteorological station on day i, respectively, the Daily

Average Temperature (DAT) on that day is calculated as

(Timax _I_Timin)

Ti= >

(1)

a base temperature, as well as the daily average temperature (DAT) are two variables
that determine how many degrees a day there are. The amount of heat that must build
up each day for a crop to grow, sprout new leaves, reach the reproductive stage, and
eventually mature is known as the growing degree day (Patricia P. et al, 2021). We
consider maize crop to be produced under irrigation for the period of August to

December. Maize requires at least 10°C. GDD is defined as:

GDD; = max{T; — 10, 0} (2
a full 153-day period's GDD is defined as,
GDD = X123 GDD; (3)

2.3 Daily average temperature stochastic dynamics
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Putting together seasonality, long-term trends, unpredictability, and mean reversion,
temperature has been modelled by a stochastic process

Proposition 2.2.1: If the Daily Average Temperature (DAT) follows an Ornstein-
Uhlenbeck process with a mean reversion that is mean-reverting and whose speed

varies over time as well as a seasonal mean and variance:

The Ito formula yields the following implicit solution:

t t t t
T, = T/ + elo K@Wdu(rm _ Ty 4 plyldu | f g, e~ Js KW gy,

N

which is the same is:
Ty = [T = TJe ™ ) + T + [[ e~ g dw, (5)

In equation (5) W, is the Brownian motion, a; is the deterministic function of time t,

the random variable fste"‘(t‘r)ardwr is normally distributed with mean zero and a

. t _ _
variance [ e 2 ZdW.,

The Brownian motion's characteristic of independent increments forms the foundation
of the proof. The filtration F; leads us to the conclusion that T; is normally distributed,

with mean and variance given by:
EP[T %] = [Ty — T{*le =) + 1 (6)
VE = var[I|F] = [} e ¢ Nokd,. (7)
We now describe explicitly the expression of the equation, (3), when s =t — 1. | get
Ty = [Teoq — T ]e ™ ) + T 4 [T 7Kg, dw;, (8)

The variable ftt_l e k=g _dW, is a random variable having a Gaussian distribution,

mean zero, and variance:
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t
Vt2 = var[Ty|Fe_1] = f

1 e_Zk(t_r)O'err. (9)

Therefore, we can write (8) as
Ty = [Te—1 — Ttnzl]e_k + T + 0pe (10)

This means that (6) has a simple discrete time representation with an autoregressive
structure of order 1 (AR (1)). This result has very important implications for the
estimate of the unknown. This indicates that (6) has a straightforward discrete time
representation with an order 1 autoregressive structure (AR (1)). The estimation of the
unknown parameter in the equation above is significantly impacted by this outcome.
Since the variable in the case of T;is observed at discrete points in time rather than
constantly, estimate in continuous time is generally quite challenging. The likelihood
function can only be analytically expressed for a small subset of processes. The
Ornstein-Uhlenbeck process is one of them and is illustrated in (10). These models can
be calculated with precision using techniques like maximum likelihood. Although they
use a two-step estimation method, Atalon, et al., (2002) never assume that a generalized
Ornstein-Uhlenbeck process permits flawless discretization. The model of average
temperature T, in day t is given as follows as a result of applying the parameterized

maximum likelihood method for equation (10)
Ty = a[T—y — T{Z4] + T" + 0vt (11)

with @ = e™* and where, g,~ N(0, 1), the deterministic portion of the temperature is
T{™, the volatility is a;, and « is the mean reversion speed. When coming up with this
deterministic part we take into account the combinational of the seasonality, trend and

the expression for the sine function shift. Hence it is given by the expression:
T" = A+ Bt + Csin(wt + p) (12)

_ 21
“ =365

where T{™ shows the predicted temperature for a day with t in 2021, where the number
of days in a year is given by t (1-365). Variable A represents the average daily air
temperature for the period from 1.1.1990 to 31.12.2020, variable B describes the impact
of an annual global warming trend, and variable C establishes the seasonality of
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temperatures throughout the year, or how much the winter and summer temperatures
deviate from the annual temperature mean. Since the highest and lowest temperatures
neither happen at the beginning nor the middle of the year. This phenomenon is known
as phase shift denoted by p.

Using trigonometric formula, we have
T™ = A + Bt + Csin(wt + p)
= A+ B + C; sin(wt) + C, sin(wt)

Where

c= fclz+c§

p = arctan (c_2> -7
€1
Similarly, based on practical findings, we define the cyclic nature of the function &2
(Benth and Benth (2005), Zapranis and Alexandridis (2014)).
82=c+Yl_, cisin[:%é] + Zle cl-cos[;%;] ............................ (13)

Based on past temperature records, variables A, B, and C will be determined, along
with the shift p. In equation (12) (Atalon, et al., 2002) concentrated on the seasonality,
trend and the sine function's shift expression. Alaton et al (2002), modelled temperature
model which is of a long-term nature and may not be equally applicable in short term.
They made the assumption known as homoscedasticity that variance would be constant
over time. However, according to (Olivier Niyitegeka and D.D. Tewari, 2013),
empirical evidence has disputed this supposition. When calm and volatile periods are
observed in time series, volatility clustering is known to occur, making the variance at
least appear predictable. Since temperature data is time series data may display
significant auto-correlation. Hence, we propose to extend this Alaton et al (2002) by
relaxing the assumption concerning &, to (12) and allowing &; to be autocorrelated. So

it will be
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T/™ = A+ B + C; sin(wt) + C, sin(wt) + &, &|F._;~N (0, 6?) (14)

Assume ¢; follows the GARCH model (Generalized Autoregressive Conditional
Heteroskedastic). According to Olivier Niyitegeka and D.D. Tewari (2013), GARCH
forecasts future variability and addresses the issue regarding heteroskedasticity, or the
time series' non-linear variability. The conditional variance can depend on prior own
lags in the GARCH model, which uses the maximum likelihood method. The following

is how the conditional variance equation is written.

_ p 2 q 2
0f = ag+ i1 Bofy + L ey

(15)

This replaces equation (13) where a,, has been substituted by c. o is the volatility at
time t. a; has also been substituted by c; sin(wt) and g has also been substituted by
c;cos(wt). €2, is the previous period’s squared error term. o/ ,, is the previous

period’s volatility.
Proposition 3.2. If T/* = E[T,], the process

dT; = [a(T/* —T,) + %] dt + o, dW, revertto T{™. For the proof refer to appendix.

2.4 Pricing weather derivatives in an incomplete market

The weather derivatives market is an example of an incomplete market, due to the fact
that the fundamental variable temperature cannot be traded. In order to establish distinct
pricing for such contracts, a risk's market value is added. The cost of risk is assumed to
be constant for to maintain simplicity. Furthermore, the tick price is determined at $1
per degree day and a It is assumed that the risk-free interest rate, r, remains constant.
Typically, a risk-neutral valuation approach is used to price financial derivatives.
According to the financial theory, a contingent claim's cost F, which is based on

stochastic variables I, can be determined as follows (Xu, et al., 2007):
F = Eo(D, Wr (1) (16)

I can be an asset that is traded, like a stock, or untraded, like a weather index. At expiry

time T, W represents the payoff of the derivative, and D represents a discount factor

61



e~"T with free rate. The subscript Q indicates that the expectation of the derivative pay-
off is to be calculated replacing a real-world probability with risk-neutral probabilities
measurements, and E denotes an expectation, conditional on the information now
available (Dzupire, et al., 2019)

Equation (18) can be written as

F = e Ep (g Wr(D) (17)

Z—g shows the Radon-Nikodym derivative of Q with respect to P.

With the change of neutral measure, the stochastic process of I becomes a martingale.
If the stock moves with a geometric Brownian motion, reducing the drift to a risk-free

rate can lead to a change in measure.

But if indexes cannot be traded, the market is insufficient since a self-financing
portfolio cannot reproduce the derivative. As a result, it is impossible to use no-
arbitrage pricing methods for weather derivatives because we are unable to create a
portfolio free of risk that combines weather index and derivative (Xu et al.,2007).
Additionally, the no-arbitrage criterion does not produce a distinctive pace because
there are numerous martingale measures, therefore only contingent claims secured by

bonds may be achieved (Dzupire et al., 2019). Formally we have the range

[Infe™"T Ep (52, Wp (D), Sup e ™"T Ep (22, Wy (1)] (18)
Q ap Q ap

The interval in equation (14) is exceedingly big and therefore useless, where Q indicates
the set of all equivalent martingale measures (Xu et al., 2007). The investor seeks to
maximize the anticipated utility of the final wealth and minimize risks associated with
the uncertain reward in an incomplete market by engaging in dynamic trading. Finding
a method that maximizes the expected utility of terminal wealth under the physical

measure while minimizing risks as measured by a risk measure is the objective.
2.5 Temperature barrier option pricing

A barrier option operates similarly to a standard option up until the time when the price
of the underlying asset, X, crosses a predetermined barrier, B (Primajati G., 2020). The
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feature of the selection is either a knock-in or knock-out. If an option is knocked in, it
has no value unless the asset price passes the threshold. When an option is knocked out,
it loses all of its value once the asset's price crosses the threshold. The barrier must be
crossed in the direction indicated by the arrows going up and down. In addition to X
and B, the strike price K, interest rate r, time to maturity T, dividend rate q, and volatility

o are the input arguments utilized to determine the value of barrier options.

Barrier options are one of the most frequently traded derivatives on the financial
markets, claim Wang, B. & Wang, L. (2011). They stand out from standard solutions
thanks to unique qualities. The fact that barrier options are typically less expensive than
normal options is one reason why an investor prefers them to plain vanilla options. This
is so that the option holder can collect the payoff, the asset price must pass a particular
threshold first. The third factor is that barrier options might better fit risk hedging

requirements than conventional options.

Farmers may buy a call option if it is anticipated to be higher. The payoff serves for the
call contracts are provided by Baosung & Kooten, (2015) from the perspective of the
purchasers.

0 x<k
P(X)cau = {D(x k) xzk (19)

P(x)denotes the option payoff, D the tick size (the amount of money for each weather
index unit) and k for the strike (trigger)value. Equation (19) turn also to be the payment
of the barrier down and out call option for the barrier temperature option, where the k

is now the barrier level.

For barrier it is

P(x) _{ 0, x<kandx < B (20)
UM\ px—k),x>kandx >B,0<t<T

Where B is the barrier level and x is the weather index (GDD).

The GDD option is dependent on the sum of the GDD across the growth season, where
each temperature process follows the Gaussian process, which is represented by
T:~N (us, v¢). Once we get both the conditional mean and variance of the GDD, we can
proceed. The conditional mean and variance of GDD,, for time t < t; can be calculated

as follows:
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GDDy~(N (uy, 07)
Where,
ty, = EQ[GDD,|F] = X1, EYTy|F ] — k, (21)

02 = varQGDD,|F,] = ¥, var T |F] + 2 X X icj cov®[ Ty, Tyj1|Fe]
(22)

The anticipated return is the following, assuming a normal distribution for the weather

indicator used in a financial instrument:

E, = J, f() p(x)dx, (23)

Where p(x), is the payment associated with the financial instrument for the potential
outcome. x is the weather index. This x at some point will reach the barrier level. The

probability density function (PDF) of the weather index is denoted by f(x). When the

weather index is transformed into a regular normal distribution, let z = % and the

expected pay-out function is as follows:

E, = [} p(@p(@)dz = 1 [T p(2)p(x)dx (24)

From equation (24), ¢(z) signifies the PDF of the typical normal distribution and o is

the standard deviation of the weather index.

Inserting the payoff function for the call contract in the corresponding uncapped call
options with closed-form functions are as follows when the expected pay-out function
is entered:

Epca == Jy Dx—K) (%) dx = Do (%) +D(u—k) [1 o ('%u)]
(25)

Multiplying the above by the difference of x and B (x — B) gives us the call pay-off

of the barrier call option to be

= (x—B) [Daq’) (’%") +D(u—k) [1 —® (’%")” (26)
Proposition 3.3: Therefore, the cost of the GDD call option attime t < t; is as follows:
c(t) = e T DEQmax(H,, — k, 0)| F]
= e [ 7 (x = k) fi, (X)dx
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_ (k—pn)?

_ _ k—pn n 02
= e (, — k) (- U—:) +e ) 27)

Where t,, is time to maturity. the normal distribution's probability density function is
fu,» and @ represents the cumulative distribution function for the common normal

distribution.
Proposition 3.4 The price of the down and out barrier call option as

_(k—un)?

_ _ k—pn n
= ¢77(tn"0) {(un — 1) (- a_:) tame }(x -B) (28)

3. PARAMETER ESTIMATIONS

3.1 DESCRIPTIVE STATISTICS

This study looks at the daily average temperature data that was recorded in degrees
Celsius in Malawi's Kasungu area. The data spans the years 1990 to 2020 and 11315
data series are included. In order to preserve consistency over time, the temperature
readings on February 29 of every leap year have been dropped. In Malawi's center area,

Kasungu district is located.

A very big sample, which runs the risk of estimating parameters being changed by
dynamics that do not represent future behaviors of temperature anymore, including
urban influences, is regarded to be a worse sample to research temperature dynamics
than a 31-year duration period. On the other hand, if the period is really short, it's
possible that crucial dynamics won't be shown, which could lead to a bad model
(Alexandridis and Zapranis, 2006).

From our data set of 31 years, we plot the graph of average temperature as shown in
figure 4.1. This graph shows the average temperature of Kasungu district from 1990-
2020. It highlights the seasonality of daily average temperature changes, particularly
highlighting how it resembles a sine function. The daily average temperature fluctuates

often and predictably between hot summer and cold winter months.
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Figure 3.1 shows a stochastic model of average daily temperature in Kasungu from 1990 to 2020.

The use of using the Ornstein-Uhlenbeck procedure to mean-revert simulate
temperature behaviour is justified in light of seasonal fluctuation likewise long-term
trends in temperature. The daily average temperature variation is meant to gradually
return to the mean over time. The Anderson Darling test was used to determine whether
the varying temperatures for the Kasungu district are normal. The hypothesis was
rejected with an A = 0.83279, P.value = 0.03181. Although it is not normally
distributed, we shall treat the daily variation in temperature as a Brownian motion. This
is the case because when the histogram is used to check the temperature difference’s
normality, it finds that it is roughly normal. This agrees with what Wang, et al., (2015)
who state that when data is huge then it has to be approximate normal and Brownian
motion should be considered. Figure 4.2 illustrates that the temperature differential is

roughly normal.
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Figure 3.2: histogram of temperature differences of Kasungu district, Malawi.

The motions of the process are characterized by the stochastic differential equation if

we indicate by T; the average temperature at the date ¢.

where W; is the Brownian Motion, o; is the volatility square root time of the

fluctuations, T{™is the long-term mean, and k is the mean reversion rate.

To better understand the dynamics of temperature, we computed the descriptive

statistics of the data, as provided in Table 1.

Table 3.1: Kasungu's descriptive temperature statistics

Maximum 34.7
Minimum 9

Mean 21.88196
Median 22.1

Mode 23.25
Variance 8.504897
Standard Deviation 2.916316
Skewness -0.1304493
Kurtosis 2.961842
Coefficient of variation 13 %

According to a descriptive evaluation of the information, the modal temperature is
23.25°C, while the average daily temperature is 21.8833°C. The coefficient of variation
(CV) is defined as the difference between the standard deviation and the mean. With an
increase in the coefficient of variation, the mean dispersion becomes more pronounced.
Usually, it is expressed as a percentage. The estimated average of 21.88330C (in our
example) is shown to be representative of the data by the coefficient of variation. The
CV of 13% demonstrates the data's minimal variability. As a result, a dataset's estimated

average of the values is more reliable.

The observed distribution exhibits a little amount of leftward asymmetry, with a
skewness (asymmetry coefficient) smaller than 0 (-0.1304493). The data's median

temperature is 22.1°C, whereas the mean is 21.88195°C, making the data's mode,

67



23.25°C, greater. The mode must be larger than both the median and the arithmetic

mean in order for there to be left-skewed asymmetry, and this is proven (Kovac, 2020).

The size of the two tails' combined lengths is measured by kurtosis. It calculates how
likely the tails are. The amount is typically contrasted with the normal distribution's
kurtosis, which is 3 in this case. Our data are normally distributed because the observed
kurtosis is 2.961842, which is roughly 3.

3.2 TREND AND SEASONALITY

The temperature process has a seasonal trend, as seen in figure 4:1. Consequently, we

create a seasonal mean that also considers patterns as

T = A + Bt + Csin(wt + p), (‘)23%

where t is the range of days (1-365) in a calendar year. T/™ is the predicted temperature
for a given day in 2021. A + Bt, which reflects the tendency brought on by urban
effects and global warming, since extreme temperature occurrences do not necessarily
occur at the beginning and middle of the year. C, which stands for amplitude,

determines when we feel the highest or lowest temperature.
Using trigonometric formulae, we have
T™ = A+ Bt + Csin(wt + p)
= A+ B + C; sin(wt) + C, sin(wt)

Where

— /2 2
c= |c]f+cy

o)
p = arctan (—) -7
C1

To determine the parameters A = {A, B, ¢y, c,} that solve the optimization problem

ming||T™ — X(t)]|, we therefore fit T/™ using least squares methods. X (t) is the data
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vector. We present estimated values for parameters in table 4:2, all of which suggested

that they are significant. When the estimated values are inserted into T/™"we get
T{ = 22.04 — 0.0000286¢ + 2.89929sin (2=t + 1.60807) (30)

where A is the coefficient, which is set to 22.04 °C, and is computed as the average of
daily average temperatures between 1.1.1990 and 31.12.2020. Coefficient B, which has
a value of -0.0000284t°C, represents the expected rise in the annual average
temperature in 2021 as compared to the average of the average temperatures for the
base period (1990-2020).

Given that it assumes the highest average daily temperature in 2021 will be around
24.93929 °C (22.04 °C + 2.89929 °C) and the lowest will be approximately 19.14071
°C (22.04 °C - 2.89929 °C), the value of Factor C is 2.89929 °C, which is realistic and
predicted.

As a result, the average daily temperature, previously computed at 22.04 °C, can be
anticipated at the end of March (2.85 months after the year's start), and all average daily
values beginning on January 1 should be lower than 22.04 °C with an upward tendency.
The sine function shift is 1.60807, or roughly three months of a year, in terms of the
sine function, or 2.85 months. In March, the yearly average temperature for the months
that are not susceptible to significant temperature swings changes.

The predicted values for 2021 were derived using the O-U procedure and have been

presented in Figure 3:9 by substituting the 365 calendar days for t.

Table 3:2 provides the seasonal mean's estimated parameter values.

Parameter Estimated Std Error t value Pr(>|t])

A 2.204e+01 3.600e-02 612.248 < 2e-16 ***
B -2.864e-05 5.512e-06 -5.196 2.07e-07 ***
C1 -8.671e-01 2.546e-02 -34.058 < 2e-16 ***
C2 2.986e+00 | 2.545¢-02 | 117.331 < 2e-16 ***
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Figure 3:3 shows the daily average temperature and predicted season means.
The yearly mean and the daily average temperature are depicted in Figure 3:3. The

mean reasonably fits the data.

3.3 ESTIMATION OF MEAN REVERTING SPEED
According to Patricia P. et al., (2021) and Wang et al.,( 2015) derived the simplest

Ornstein-Uhlenbeck process, often known as a mean-reverting process, is as follows.

arf™

th = [Q’(Ttm - Tt) + dt

| dt + o, dW, (31)
Here, T{™, is the normal level of T, to which T; tends to revert, and « is the speed of
reversion. Keep in mind that the difference between T, and T/" determines the
anticipated change in T;. T; is more likely to decrease (increase) over the following
brief period of time if T; is higher (less) than T/™. Therefore, despite satisfying the
Markov characteristic, this process lacks independent increments.
If the value of T; is currently T, and T; is calculated using equation (18), then its
anticipated value at any point in the future is given by

E[T] =T + (T — TMe ™ (32)

Also, the variance of (T, — T{™) is
VT~ T = (1 - e72%) (33)

For derivation of equation 32 and 33, we refer to appendix 4
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2
The expected value of T, converges to Z—a as may be seen from these formulae.

Additionally, as @ — oo, V[T;] — 0, this denotes that T, can never stray from T{™, not
even momentarily. In the end, T; becomes a straightforward Brownian motion, and
V[T,] - o?. The first-order autoregressive process in discrete time is represented by
equation (32) in continuous time. Equation (32) is the limiting case for the following
AR(1) process as At — 0.

Te =T =T(1—e?) + (672 = DToq + & (40)
where €, has the mean of a normal distribution zero and a standard deviation of o,and
02 =2 (1-e2) (41)
Therefore, by doing the regression and utilizing discrete temporal data (the only data
ever accessible), one might estimate the parameters of equation (34):
T —Ti(—1 =a+bTi_1 + € (42)
a

Afterwards, calculating T,™ = ——,

a = —log(1+ b) (43)

_ log(1+b)
7= O—t\f (1+b)2-1 “44)

Where o, is the regression's standard error.

And

To find this mean reversion in our case we run the ACF of the decomposed data. The
ACF of our data is our b. The same can also be found by running a regression. b =
—0.2137. Substituting this into (43) we get the mean reversion of 0.2404. Fitting in
mean reversion and o; in (44) we get 0.8943.

Kasungu average temperature data was decomposed under the additive model to find
the mean reversion. Figure 3:4. Shows the decomposed plot of the statistics on the
average temperature of kasungu. Figure 3:5 shows the Auto Correlation Function
(ACF) plot.
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Figure 3:4: Decomposed plot of the Average Temperature of Kasungu
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Figure 3:5: shows the Auto Correlation Function (ACF) plot
In ACF, there are significant autocorrelation values for a number of lags, which may
call for the adoption of more advanced autoregressive models. The ACF also reveals
the presence of seasonality in both the residuals and time dependence in the variance of
residuals. To extract the g2 from the residuals. We must analyse and simulate the
random noise process first. But testing for stationarity Augmented Dickey-Fuller
(ADF) test, the Dickey — Fuller = —7.3612, P.value = 0.01. Since the P-value is
less than 0.05, we cannot rule out the possibility that the data are stationary and that

mean reversion is constant.
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3.4 CALCULATING THE VOLATILITY OF THE TEMPERATURE PROCESS

From the residual graph in figure 3:6 below, as many points do not vary from the normal

line, it can be said that the residuals are normally distributed.
Normal O—O
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Figure 3:6, a residuals graph.
According to the methods outlined in (Benth, F.E., & Saltyt-Benth, 2011; Dzupire et

al., 2019; Wang, et al, 2015), the volatility is extracted. After that, the residuals are split
into 365 categories, each of which represents a day of the year for the last 31 years
(1990-2020). Then, we calculate the mean of the squared residual in each set of
expected daily residuals:

of = E[(0&)°] (45)

These numbers are used as observable estimates of the daily variance based on years of

observations for the specific day, as seen in the figure below.

@ — —— empirical volatility
— Predicted volatility

Volatility

=~ MIRE LU KA S R : LT O Rt 1S

|-”|r Flr

T | | T
0 100 200 300

Days of the Year

73



Figure 3:7, Empirical volatility
As can be observed, the wet season has bigger temperature fluctuations than the dry

season. In order to derive the volatility model, we fit the data using the volatility model
(44)

27t
365

07 = —0.02603 — 0.17421 sin | (45)
Figure (3:7) illustrates the comparison between the estimated model and the empirical
volatility and demonstrates how closely the estimated model matches the empirical

model.

Comparing the actual average temperature to the outcomes of the stochastic models
under ARIMA to determine how well the model performed. The calculated Root Mean
Square Error (RMSE), which evaluates how well the temperature model performs, has
a value of approximately 1.158505 and the Mean Performance Error (MPE), which
compares the actual temperature to temperature models, was roughly -0.3110809. This
means that the model is over-forecasted by around 0.311%. Hence figure 4:8 below is
the graph of backward forecast temperature. This has been done on the decomposed
temperature that is without seasonality and trend (random). Figure 4.9 shows forward
forecasted temperature from 2021 to 2024 of Kasungu district using our temperature
model. These forecasted temperature figures tell that no matter the situation is; this
model can support the option provider in setting the derivative price for specific time
frame regardless of anything.
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Figure 3:8. shows backward forecasted temperature of kasungu district

Forecasted Temperature of Kasungu District

Average Temperature
22 23 24 25
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|
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year

Figure 3:9. Shows forward forecasted Temperature of Kasungu district.

4. HEDGING MAIZE CROP YIELD

Hedging is an advanced risk management strategy that involves buying or selling an
investment in order to potentially help reduce the chance of loss of an existing position.
When purchasing call options, farmers use temperature as the underlying asset. A call
option gives its owner the right to pay a premium and purchase the underlying asset
from the provider for the specified time period at the specified price. If the buyer
expects unfavourable weather that could increase the price of derivatives due to
monetary gain generated by the set price the supplier has to offer the customer, they

may decide to buy call options.

Each GDD's monetary value and the weather derivative's monetary value are calculated
based on the index's value. The derivative buyer wagers that throughout the duration of
the contract, there will be an unfavourable change in air temperature for his company.

The provider will pay the buyer a set fee if his prediction comes true.

Weather derivatives must be introduced as a contingency mechanism to assist farmers

in hedging possible losses in maize yield due to climate change, particularly the
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fluctuation of temperatures. The paper offers temperature weather derivatives, which
have temperature as their underlying index. Possibly one of the most important

elements affecting the variability of maize output is temperature.

Now taking from Proposition 3.3: Therefore, the cost of the GDD call option at time

t < t; isas follows:
c(t) = e T DEQmax(H,, — k, 0)| F,]

= e [P (x = k) fi, (x)dx

_(k=pn)?

— —T(tn—t) _ _ k_ﬂn On o2 “«
- ¢ {(kn k)(p( an)+\/(27t)e oy

C(t) is the price or premium that the hedger (buyer of call option) needs to pay for the
contract, r is a risk-free periodic market interest rate, t is the date the contract is issued
(purchased), and t,, is the date the contract is claimed or the expiration date. E“is the
expected payoff based on the predicted historical mean value of the temperature. The
seller of the option would expect a reward for taking a risk loading which is often
between 20% and 30% of the payoff (Baojing sun and G. Cornelis Van K. 2015). In
the current application, we set the risk loading at 20% of the expected payoff of the

contract.

From the forecasted temperature of 2021, the GDD has been calculated from August 1
to December 31 since this is the time where irrigation of maize crop is mainly being
done. It has been seen observed that the temperatures are too low in the early month of
August. This gives an insight to the farmer to hedge their crop yield against low
temperature. The temperatures are also high in the months of November and December;
this also give an insight to a farmer to hedge his or her crop yield against high

temperatures.
To price the financial weather derivatives, we assume a tick size D = $1 and risk-free
interest rate r = 0.08, At = %year(l August to 31 December, 2021) making 153 days.

and risk loading b = 20%, p = 12.68°C. The forecasted GDDs and standard
deviation for 2021 are 1937.43°C, and 1.830C respectively are used to calculate the

actual premiums for the contracts.
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Table 3: Specification of GDD options for year 2021

Items call options
Weather index GDD(x)

Strike Level 12.68-2*1.83
Barrier level B=18%

Tick Size (D) $1

Premium $3.50

Payoff Max(GDD-K, 0)
Issue Date 1 August 2021
Maturity date 31 December 2022

The strike value is u — 20 for above 2 standard deviation the forecasted GDDs, This

x—

2= Tﬂ , then ¢(2) = 0.9772 and ®(2) = 0.9772. The premium is calculated from

equation 33. The premium is $3.50 because we assume that the GDD is above barrier
level with a difference of one. This is where the barrier option is equal to vanilla option.
In this case, the barrier option does not knock out. Hence gives the holder the right to
buy the underlying asset since it does not reach or fall below a predefined level over

the option's lifetime.

The premium has been calculated to be $3.50 because we assume that the GDD is above
the barrier level with a difference of one. This is where the barrier option is equal to the
vanilla option. In this case, the barrier option does not knock out. Hence gives the holder
the right to buy the underlying asset since it does not reach or fall below a predefined
level over the option's lifetime. Now if the GDD does not exceed the barrier level then
the farmer will not have to pay the premium of $3.50 because the option is invalid. On
the same note, the farmer will have to exercise his right by paying the premium of this
calculated premium when the GDD exceeds the barrier level. In return for this, the
farmer gets paid off which happens to be the difference between GDD and barrier. This

will be taken daily within the contract.
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5. DISCUSSION AND CONCLUSION

The weather derivative market is a classical incomplete market since the weather
indexes are not tradable assets, thus traditional no-arbitrage pricing methods such as

the Black—Scholes are not applicable in pricing weather derivatives.

The study results further prove that the average temperature has been increasing since
1990. This is evidenced in Figure 3:5, tells us a story of an increase in average
temperature. The results show that there will be a slow but steady increase in
temperature. This scenario does not offer a positive outlook for agriculture production

since they are vulnerable to an increase in temperature.

According to our model, if the parameters remain unchanged in the next 30 years or so,
the results of this study provides an early view of possible temperature patterns. This
can help the government and non-governmental organisation to devise contingency
measures. Agriculture can be particularly threatened by these forecasts. As already
stipulated earlier sterility of maize can be triggered by temperatures of 38° and above
and 10°% and below. This tells us that agriculture done during irrigation is much more

vulnerable.

With the agenda of Malawi 2063, this study is good enough to be incorporated into
agriculture policy as it presents a way to protect farmers from financial consequences
due to extreme temperatures. This will bring an increase in the income of individual
farmers, thereby mitigating poverty. We assume there is no correlation between the
tradable asset and weather indexes, considering that we are interested in how a farmer
can hedge temperature-related weather risks. The pricing model developed can be used
in the agriculture industry where a farmer is interested in hedging weather risks due to
temperature. It can also price weather derivatives in other weather-related industries
affected by temperature. The results of this study can help insurance providers and the
government to design products that can help the farmers. Projecting future temperatures
and growing degree days is uncertain, so farmers wish to hedge against weather risk.
However, markets must provide farmers with attractive, practical hedges representing

producers' risks.
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With, efficient and reliable pricing models, basis risks would decrease. As a result, the
farmer would be more willing to pay for the contracts and trading activities in the

market for weather derivatives.
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APPENDICES

Appendix 1

Proof of Proposition 3.1: let us rewrite dT; = dT{™* + k(T{" — T;) + o,dW; as
th = thdt + O-tdBt

Where T, = (T, — T™). The following transformation is practical for solving the

stochastic equation above:
G(T,t) = e~ o kwag,
Making use of the Ito lemma

G —[fk@au 9%G G — Yk dus
_ o _ _ o
ar -~ € v omz = 0 G = ke Ie

anda = k(t)T,

We have that
tk duA tk d tk d
th = (ke_fo W) uTt _ ke—fo (w) uTt) dt + O_te—fo (u) udBt
Which reduces to
t
th == O'te_fﬂ k(u)dudBt

Suppose s < t, then integrating the above equation, we have that

t t
G — G = J agre~lokwdugp,
N

t R R t
And replacing G, we have that e~ Jo kWaup, _ 7 = fst oo lokWdugp

By rearrangement, we achieve that

t
Tt = e_fotk(u)duj\"t + e‘f;k(u)duj O-te—f;k(u)dudBt

N
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t t t t
(Tt . Ttm) — e—fo k(u)du(Ts . Tsm) + e—fo k(w)du f O_te—fo k(u)dudvvs

N

Finally, by rearranging, we prove the proposition

t t t t
Ty = T + e~ o KWau (T Ty 4 o= JokWdu J g e~ Js Kwdu gy

N

Sinces =t —1'and u = t — s hence
Ty = [To_q — T ]e K9 1" + fste‘k(t‘r)ardWr n

Appendix 2:

t
Proof of Proposition 3.2: Let Z, = eJo ¥(T/* — T))
Ito’s lemma
t d t d
dZ, = elo®® TMgt + qe® (T — T,)dt- elo 23547,

= efotads[(Ttm + a(Ttm - Tt)dt - ((l(Ttm - Tt) + Tgn)dt - O-tth
t

t
o Zt = ZO - J efO adsO'SdVVS
0

t t
eh U (T — ) = T =Ty — [} e “®g,aw,

Now T§* — T, = ¢ gives

t
t t
T —T, = _efoadsfefoadso.sdm/s
0

t
¢ ¢
Tt:Ttm_i_efoadsfefoadso_de/S
0

= E[T,] = T[" n
Appendix 3

Proof of proposition 3.3
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We know that H,, = x~(N (i, o). Let u = (x;un)'

dx
thendu = g dx = o,du,and x = u, + o,u.
n

f:(x — k) fu,(x)dx = f

k

i, e~ [ i, GOax
k

It is simple to calculate the right-hand side's second term in the manner shown below:

k fooan (x)dx =k (1 —k Jmen (x)dx)
k k
k{1 o5

k_ﬂn)

On

- kq)(_

The first term fkoo x fu, (x)dx can be calculated as the follows:

jOO oo x _(k_llgl)
fon(x)dx=j e 20 dx
k k +/2moy

2
J :un + opu —% du
lin

V2moy,

[ee] 1 _22
= ﬁ““n\/T_n (up +o,uw)e 2 du
on
J‘” 1 uzd f‘x’ 1 _gzd
= — e u+ o,u—— e 2 du
k—tn 'un\/27r [T V2m

On On

k — .un f
(% \/_ lin

uezdu

= U, ® <_

k — o _(k_ﬂn)z
= u,d (_ ﬂn) n n e 202
On V 2T

The following can be used to generate the second term of the final equation:

© u2 u2
ue z du=-e2 |
J;(_#n |—k En

O-
on n
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_(k—pn)?

Therefore, [”(x — k) fi, (¥)dx = (, — k)& (—=22) + Lo =
Appendix 4

We return to the easy O-U (mean-reverting) approach of equation (32) for the derivation
of equations 32 and 33. Set T{™ to 0 to make the calculation simpler, which results in
the equation: dT; = —aT; dt + o, dW; (34)

We said that equations (32) and (33) provide the mean and variance of T; in the text.
To support this assertion, we can apply the Kolmogorov forward equation.

Write M(0,t) = E[e~9T]as the moment-generating function for T,

= [ ¢(To, to: T, e 0dt (35)
Then,
oM _ (e 09 ,—gr
e = e dT (36)
The Kolmogorov forward for this process is
99 _ 1 _20°¢ .09
ot =20 arz AT 5t agp (37)

The following equation for M (0, t) is obtained by substituting this for Z—‘f in equation

(17) and integrating by parts:

1 5,2 oM _ oM
209 aeae_at

(38)
Boundary conditions must be met in order to solve this partial differential:
M(0,t) = 1,—My(0,0) = T, and
V[To] = Mgo(0,0) — Toz =0
Hence the equation has the following equation

262

M(0,t) = e 4 [1 —T,0e-t + G TZ — g) Hze—zm] (39)
Using the fact the E[T,] = —M(0,t) and E[TZ#] = M, (0, t)verifies equation (32) and
(33) m
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APPENDIX

This section presents the R code used to analyse data in this study.

ChitoTemp <- read_csv("C:/Users/Admin/Desktop/R FILES/ChitoTemp.csv")

dates <- seq(as.Date("01/01/1990", format = "%d/%m/%Y"),by = "days", length =
length(ChitoTemp$Temperature))

plot(dates, ChitoTemp$Temperature, type="I", main="Temperature of Kasungu

District", xlab="year",ylab ="Average Temperature")

hist(ChitoTemp$Temperature, main = "Temperature Difference Kasungu District",

xlab="Average Temperature Difference", ylab ="frequency" )
mean(ChitoTemp$Temperature)
median(ChitoTemp$Temperature)
max(ChitoTemp$Temperature)
min(ChitoTemp$Temperature)
mode(ChitoTemp$Temperature)
sd(ChitoTemp$Temperature)

var(ChitoTemp$Temperature)
summary(ChitoTemp$Temperature)
summary.regression(ChitoTemp$Temperature)
(cor.value<-acf(ChitoTemp$Temperature,plot = FALSE)$acf[2])

fitl=Im(ChitoTemp$Temperature~sin(2*pi*ChitoTemp$ Day
Number'/365)+cos(2*pi*ChitoTemp$ Day Number'/365),ChitoTemp)

summary(fitl)
x<-c(ChitoTemp$ Day Number®)
y<-c(ChitoTemp$Temperature)
regression=Im(y~x)

summary(regression)
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confint(regression)#95% confidence intervals
fit=Im(y~x+sin(2*pi*x/365)+cos(2*pi*x/365), ChitoTemp)
summary(fit)

dates <- seq(as.Date("01/01/1990", format = "%d/%m/%Y"),by = "days", length =
length(ChitoTemp$Temperature))

plot(dates, ChitoTemp$Temperature, type="I", main="Temperature of Kasungu

District", xlab="year",ylab ="Average Temperature")

mu=22.04-0.0000284*ChitoTemp$ Day Number -
0.08671*sin(2*pi*ChitoTemp$ Day
Number'/365)+2.986*cos(2*pi*ChitoTemp$ Day Number'/365)

plot(dates, ChitoTemp$Temperature, type="I1", xlab="Year", ylab="Average
Temperature")

lines(dates, mu, type = "1",col="red",lwd=2,Ity="solid")

legend("topleft”, c("daily average temperature”, "seasonal mean"), Ity =
c("solid","solid"), col=c("black","red"))

plot(dates, mu, type = "I",col="red",Iwd=2,lty="solid")

acf(ChitoTemp$Temperature”2)

plot(ChitoTemp$Temperature, type="1")

attributes(fit)

wit=fit$fitted.values

dat= ChitoTemp-mu

dat = random_Chito

random_Chito

acf(dat, na.action=na.pass)
x<-c(random_Chito)

my_acf=acf(x, na.action = na.pass)

my_acf
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my_acf$acf[2]

acf(dat, na.action=na.pass)

acf(dat"2,na.action=na.pass)

my_acf$acf[2]

write.table(dat, "decompose_chito$random™, row.names=FALSE, sep=",")
summary(dat)

hist(dat$Temperature)

plot(dat, type="1")

#dt_1<- diff(random_Chito, lag=1)

dt_1<-lag(random_Chito, 1)

dt_2<-lag(random_Chito,2)

dt_2<-lag(random_Chito,3)

dt_2<-lag(random_Chito,4)
datt=random_Chito[2:length(random_Chito)]
dt_1=dt_1[1:length(dt_1)-1]

fit2=Im(datt~dt_1)

summary(fit2)

sum((ChitoTemp$Temperature- mean(ChitoTemp$Temperature))"2)
ss= 0.675865*dt_1

dates <- seq(as.Date("01/01/1990", format = "%d/%m/%Y"),by = "days", length =
length(datt))

lines(dates, ss, type = "I", col="red")

legend("topleft”, c("Observed Temperature”, "Predicted

Temperature"),lty=c(*'solid","solid") , col=c("black","red"))
res=fit2$residuals

res=res/ 1.125
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write.table(res, "decompose_Chito$random", row.names=FALSE, sep=",")
skewness(decompose_Chito$random)

kurtosis(decompose_Chito$random)

plot(decompose_Chito$random, type="1")

plot(decompose_Chito$random”2, type="1")

par(mfrow=c(1,2))

plot(acf(res, plot=FALSE),main="ACF of Residuals",col="red",lwd=4, Ity="solid")

plot(acf(res"2, plot=FALSE), main="ACF of Residuals”, col="red" lwd=4,
Ity="solid")

vol=decompose_Chito$random

summary(vol)

vol=vol[1:365]

x=1:365

#da=Im(vol~sin(2*pi*x/365))
da=Im(vol~sin(2*pi*x/365), subset=(1:length(x)!=306))
summary(da)

par(mfrow = c(2,2))

plot(da)

za=—0.02603 — 0.17421sin(2*pi*x/365)
par(mfrow=c(1,1))

plot(vol, type="1", xlab="Days of the Year" ylab="Volatility")
lines(za, type="I1", col="red", lwd=2, Ity="solid")

legend("topleft”, c("empirical volatility", "Predicted volatility"),lty=c("solid","solid") ,
col=c("black","red™))

x=1:length(res)
resl=res/za™(0.5)
par(mfrow=c(1,2))
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plot(acf(resl, plot=TRUE), main="ACF of Residuals", col="red",lwd=4, Ity="solid")

plot(acf(res1"2, plot=FALSE),main="ACF of squared Residuals”, col="red",lwd=4,
Ity="solid")

dates <- seq(as.Date("01/01/1990", format = "%d/%m/%Y"),by = "days", length =
length(resl))

par(mfrow=c(1,1))

plot(dates, resl, main="Reisduals Plot", type="1", ylab="Residauls",xlab="Year")

hist(res1)

kurtosis(res1)

skewness(resl)

library(tseries)

jarque.bera.test(res1)

summary(resl)

#Simulation

n.sample <- rnorm(n = 11315, mean = 21.88, sd = 2.916)

#Skewness and Kurtosis

library(moments)

skewness(n.sample)

kurtosis(n.sample)

#Histogram

library(ggplot2)

ChitoTemp <- data.frame(n.sample)

ggplot(ChitoTemp, aes(x = n.sample), binwidth = 2) +
geom_histogram(aes(y = ..density..), fill = 'red’, alpha = 0.5) +
geom_density(colour = 'blue’) + xlab(expression(bold('Simulated Samples'))) +

ylab(expression(bold('Density")))
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