
HEDGING CROP YIELDS USING TEMPERATURE DERIVATIVES 

 

 

 

 

MASTER OF SCIENCE IN MATHEMATICAL SCIENCES THESIS 

 

 

 

 

 

PRINCE BLACKSON DENNIS CHIRWA 

 

 

 

 

UNIVERSITY OF MALAWI 

 

 

JUNE 2024



 

 

 

 

HEDGING CROP YIELDS USING TEMPERATURE DERIVATIVES 

 

Master of Science in Mathematical Sciences Thesis 

 

By 

 

Prince Blackson Dennis Chirwa 

 Bachelor of Education (Sciences)-University of Livingstonia 

 

 

 

Submitted to the Department of Mathematical Sciences, School of Applied and 

Natural Science in Partial Fulfilment for the Award of Master of Science in 

Mathematical Sciences 

 

 

 

 

 

University of Malawi 

 

June, 2024



   

 

 

DECLARATION 

This thesis is my original work and has not been submitted to any other institution for 

similar purposes. Acknowledgements have been duly made where other people's work 

has been used. I bear the responsibility for the contents of this paper. 

 

Signature:  

Prince Blackson Dennis Chirwa 

 

Date: 7th June, 2024 



   

 

 

CERTIFICATE OF APPROVAL 

The undersigned certifies that this thesis represents the student's work and effort and 

has been submitted with our approval. 

Signature:   

Date: 7th June, 2024 

Supervisor: Dr Nelson Christopher Dzupire 

 

Signature: ________________________ 

Date: ____________________________ 

Head of Department:  



   

 

 

DEDICATION 

I dedicate this work to my lovely wife, Alinafe Phiri-Chirwa and son, Dumisani Genius. 

Chirwa. They endured many days and nights of neglect just for the sake of this work. 

 



   

 

 

ACKNOWLEDGEMENT 

 

Firstly, I thank God, the Father Almighty, who provided light in times of darkness and 

thick clouds; He gave me hope when I had doubts and gave me strength, power and 

patience to complete this study. I exalt His name and adore Him.  

As a continuation, I am indebted to express my sincere thanks to my supervisor, Dr 

Nelson Christopher Dzupire, for the support, guidance and words of encouragement he 

always provided to make this research project a successful one and for his constructive 

criticisms, his willingness and readiness to be consulted. When I started doubting my 

research success, he supported and encouraged me. He did not look at all kinds of 

mistakes as my downfall, but he looked at them and found the best way he could turn 

them into positive results. 

I am also grateful to my Father, Mr Dennis J.S. Chirwa; Mother, Mrs Bridget M. 

Kachilika-Chirwa; brothers (Happy and Precious); sisters (Agnes and Queen); friend 

Happy Precious Nyasulu, and for their tireless support and encouragement they have 

given me throughout the process.



vi 

 

ABSTRACT 

Agriculture production yield varies with weather changes. This causes farmers to incur 

losses. For instance, extreme temperature leads to low maize yield. This study describes 

incomplete temperature weather derivatives in agriculture markets and applies risk 

management hedging techniques. It focuses on hedging crop yield against extreme 

temperatures during irrigation farming, which is done without a greenhouse. This study 

primarily aims to hedge maize crop yields using temperature derivatives. This is 

achieved by (i) developing a daily average temperature stochastical model. (ii) Deriving 

statistical properties of the model based on the historical data of 31 years of our sample 

space (1990 – 2020 Kasungu District Temperature data). (iii) Pricing temperature 

derivatives to hedge maize crop yield. To achieve this, a stochastically Ornstein-

Uhlenbeck process with the time-varying speed of reversion, seasonal mean, and local 

volatility that depends on the local average temperature was proposed. Based on the 

average temperature model, down and output, option pricing models for average 

temperature and growing degree day are presented. The study's findings suggest that 

the temperature will rise gradually but steadily. This scenario does not offer a positive 

outlook for agriculture production since a temperature rise can damage it. The premium 

for weather derivative options has been calculated as $3.50 per GDD index contract. 

Farmers and agricultural stakeholders can hedge their crops against extreme 

temperature-related weather risks with these models. In line with Malawi's 2063 

Millennium Development Goals (MDGs), this study acts as an eye opener for the 

government to put a policy on whether derivatives should be practised in our country 

hence, increase cash holding by improving the situation of the farmer and country.
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CHAPTER ONE 

INTRODUCTION 

 

This chapter will discuss the study's background in section 1.1. Section 1.2 looks at the 

problem statement, followed by the study's objective in section 1.3. The study's impact 

has been discussed in section 1.4. This is followed by its impact, limitations, and 

structure in sections 1.5, 1.6, and 1.7, respectively. 

 

1.1 Background 

Crops are susceptible to rising atmospheric CO2 concentrations and climate change, 

including temperature and precipitation variations (Rosenzweig, 2014; Wheeler, 2013). 

of all the changes, rising temperatures have the most significant potential to affect 

agricultural yields negatively (Ottman et al., 2012; Porter, 1999). Climate models can 

better predict changes in regional temperatures than changes in precipitation. 

According to meteorological data, the mean annual temperature in regions where 

soybean, wheat, rice, and maize are grown has risen by about 1 °C over the past century. 

It is predicted to rise even more if greenhouse gas emissions rise (Zhao, 2017). To feed 

a growing global population, it is imperative first to evaluate the danger to global food 

security and then estimate the impact of temperature increase on crop yields worldwide, 

considering any geographical variations (Nelson, 2010). 

 

Agriculture is the backbone of the Malawian economy (Ministry of Agriculture, 2016). 

It is an important sector that generates income for most of the population, helps Malawi 

earn money through exports, and supplies most manufacturing industries. Many 

smallholder farmers in Malawi primarily get their income from the agriculture and 

agribusiness sectors, which comprise an essential portion of the country's critical 

economic activity. Most farmers grow maize, soya beans, tobacco, rice, and ground 

nuts. Maize is the main crop and staple food in Malawi. 
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Smallholder farmers grow maize for food, and they sell the excess. Low yields of maize 

are a yardstick of hunger in the country. According to reports, it contributes to more 

than 25% of Africa's GDP and roughly 70% of the labour force (Gyamerah, 2019). 

According to (the Ministry of Agriculture, 2016), It is reported that the agriculture 

sector supports about 85% of the population in terms of employment. It accounts for 

over one-quarter of Malawi's gross domestic product and 90% of the foreign exchange. 

As a result, the development of the African economies, of which Malawi is a member 

state, has agriculture as one of its most significant and prominent fields. 

 

Malawi's agricultural production heavily depends on weather elements like rainfall, 

temperature, wind, etc. Any variations in these elements significantly affect harvest. 

For instance, the production of maize is greatly influenced by the weather. The stages 

of plant growth affect how each crop species responds to temperature variations. A 

specified range of maximum and minimum temperatures for each species determines 

the limits of visible growth. Extreme temperature makes it difficult for maize to 

develop. Extremely high temperatures during the reproductive stage will impact the 

viability of the pollen, the process of fertilization and the development of grains or fruits 

(Hatfield et al., 2011, 2015). The yield potential of initial grains or fruits will be reduced 

by repeated exposure to extremely hot or cold conditions during pollination. However, 

the most detrimental effects of acute exposure to vital events may occur during the 

reproductive stages. Because this measure is the one that producers and consumers are 

most concerned about, the effects of climate change are most noticeable in maize crop 

productivity. Maize grows well under temperatures of 210c to 270c. According to 

(Hatfield et al., 2015), the base temperature below which crop growth ceases is 100c 

and above 380 C.  

 

This underlines the significance of contingency planning, which includes setting up 

backup funds, strengthening currency reserves to protect against external shocks, and 

validating the usage of weather insurance (Dzupire et al., 2019). Like insurance against 

poor crop yields, which can be used at the family level, weather derivatives offered to 

small farmers may do the same. 
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According to (Islam & Chakraborti, 2015), derivatives are "financial instruments linked 

to a specific monetary instrument, indicator, or commodity and through which specific 

risks can be traded in the capital markets in their own right." The value of a financial 

derivative is derived from the price of an underlying item, such as an asset or index. 

Unlike debt securities, no principal is advanced to be repaid and no investment income 

accrues." The underlying asset may take on a variety of shapes, including goods such 

as grain, coffee, and orange juice; precious metals such as gold and silver; currency 

exchange rates; and bonds of many kinds, such as medium- to long-term transferable 

debt securities issued by governments, businesses, etc. Finally, securities of 

corporations are marketed on reputable transactions of stocks and the Stock Index, 

including shares and share warrants. 

 

Financial derivatives are essential for controlling the financial risk that corporations 

face. They have been highly successful, widely used, and valuable advances in the 

capital markets. Financial derivative markets have recently been discovered to be 

operating actively in both developed and developing nations. The principal application 

is hedging, often known as a function of price insurance, risk shifting, or risk 

transference. They give traders a means to manage their risks or shield themselves from 

unfavourable changes in the value of the underlying assets they work in. For instance, 

a farmer may take the market's risk and sell a futures contract to offset the risk. 

 

According to Prabakaran (2018), a class of financial derivatives known as "weather 

derivatives" are those whose payment is based on weather factors like temperature, 

precipitation, wind, and snowfall. Organizations or individual farmers can use this 

financial tool as risk management to lower the risks associated with unforeseen weather 

situations. The derivative's seller accepts disaster risk in exchange for a premium. The 

seller will earn if no damages happen before the contract's expiration. The derivative 

buyer is entitled to the agreed sum in the event of unforeseen or unfavourable weather. 

Using temperature-based derivatives, one may now buy and trade a natural event. To 

do so, two things are necessary: a price enabling a transaction and a unit of measurement 

for the natural occurrence that everyone can agree on. According to A. K. Alexandridis 

and A. D. Zapranis (2012), contracts created for the weather derivative market based 

on temperature make up 98–99% of the trading asset. 
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The fundamental assets in temperature contracts are temperature indices like heating 

degree days (HDD) and cooling degree days (CDD). 

 

In principle, insurance and derivatives may seem identical, yet they differ significantly 

in the buyer's motivation. A derivative is an investment vehicle in which the investor 

may stand to gain or lose money depending on whether they exercise their call option 

to redeem their investment before the derivative contract expires. Depending on the 

strike price, the investor could either make or lose money if the asset's value changes 

throughout the contract's period. A derivative so derives its value from the underlying 

asset or securities that are similar to it. In contrast, insurance is a means of risk transfer 

in which the insured assigns a portion of the risk to a third party and experts who will 

only be compensated in the event of a loss (Nicholson, 2018).  

 

Insurance contracts and derivatives differ primarily in that the holder of an insurance 

contract must establish that he has experienced a monetary loss to be entitled to 

compensation. The insurance provider will withhold his payment if he cannot 

demonstrate this. No matter how the weather impacts the derivative's holder, payouts 

for weather-related contracts are only based on the weather's actual outcome. A weather 

derivative can be purchased and used to one's advantage without having any weather-

sensitive production, for instance. These contracts can be purchased only for 

speculative purposes, just like other derivatives (Alaton; Djehiche; & Stillberger, 

2010).  

 

It is difficult for insurance contracts to function when there are uncertainties in average 

weather because they are often created to protect the holder from significant weather 

occurrences like earthquakes and typhoons. On the other hand, weather derivatives can 

be designed to have pay-outs in any weather scenario. Derivative contracts have another 

significant advantage over insurance contracts. Two actors might be available, one of 

whom will profit from a freezing winter while the other will profit from a warm one. 

These two parties can negotiate in a futures market and sign a contract to share risk-

hedging responsibilities. In the insurance industry, this is not feasible (Alaton, 

Djehiche; & Stillberger, 2010). 
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In Malawi, where farming is an investment, derivatives make sense. Investors typically 

anticipate some return, though this is not always true. For instance, unlike crop 

insurance, no proof of abnormally high or low temperatures is required in order to get 

compensation. No matter how the temperature impacts the derivative holder, the 

payouts of temperature derivatives are only based on the temperature's actual result. 

Regardless, the farmer will always have access to derivatives to protect him against 

losses. If there are no losses, the farmer will make money. Derivatives are, therefore, 

more farmer-friendly than crop insurance.  

   

1.2 Problem statement  

Crop production faces several challenges, mainly due to exposure to unfavourable 

weather conditions, including temperature changes. Agriculture yield is significantly 

influenced by weather and climate (Geng et al., 2019). However, any restrictions are 

unacceptable at a time when agricultural yields are crucial to the security of the world's 

food supply. The introduction of farm management strategies, including controlled 

environment farming, is the consequence of this search for solutions. A form of 

controlled environment farming called greenhouse farming enables optimum 

management and lessens the risks associated with inclement weather. However, most 

farmers cannot use greenhouses due to their expensive cost. Agriculture has not adopted 

financial weather derivatives to the same extent as the energy sector. However, studies 

have looked at contracts based on historical data based on rainfall or heat index (Sun et 

al., 2013). The relationship between temperature and maize output is not always clear-

cut because various products, stages of maize development, and soil textures, to name 

a few, respond to temperature differently. In order to focus on pricing financial 

derivatives for hedging maize crop output, Kooten (2015) analysed various methods of 

pricing weather derivatives options based on Growing Degree Day (GDD). Patricia P. 

(2021) developed the Growing Degree Day (GDD) European put option for rice in 

Laguna by simulating the daily average temperature. Weather derivatives and weather 

insurance may be used as tools for agricultural risk management, according to (Turvey, 

2001), who looked into the price of weather derivatives in Ontario.   
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Zong, and Ender (2016) created a climatic zone-based growth degree-day contract, a 

new weather derivatives contract. Their goal was to reduce weather risk in mainland 

China's agriculture industry by providing new forms of temperature indexes. Although 

various weather risk management technologies have recently been brought into the 

Weather Derivatives (WD) market for smallholder farmers in the majority of nations 

across the world, purchases have been fewer than predicted. These studies ignored that 

such agriculture may also be done by irrigation, where temperatures are not regulated, 

as opposed to agriculture during the rainy season, where raindrops control the air 

temperature (Means, 2018). According to Quindala and Cuaresma (2021), every 1oC 

increase during the dry season might result in a 10% decrease in yield. As a result, this 

study focuses on hedging crop production against excessive temperatures during 

irrigation farming, which is done without a greenhouse since it is prone to extreme 

temperatures, which damage crop yields. 

1.3 Research objective 

1.3.1 Main objective  

The main objective is to hedge crop yields using temperature derivatives 

1.3.2 Specific objective 

Specifically, the objectives of the study are: 

1. Develop a daily average temperature stochastic model 

2. Derive statistical properties of the model based on historical data 

3. Pricing temperature derivatives to hedge crop yield 

 

1.4 Impact of the study  

This study will help companies and individuals overcome crop yield loss due to 

temperatures. They can explore the possibility of hedging the risks due to weather by 

buying temperature derivatives that guarantee a payoff once there is forecasted erratic 

temperature. The seller of the temperature derivative agrees to bear the risk of disasters 

in return for a premium. If no damage occurs before the expiration of the contract, the 
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seller will make a profit. In the event of unexpected or adverse weather, the buyer of 

the derivative claims the agreed amount, thereby being protected from the loss. This 

means that providing the derivatives means increasing cash holding and food, which 

aligns with Malawi's 2063 vision MIPI, thereby improving the poverty situation. 

 

1.5 Limitation of the study 

There still needs to be an organised market for derivatives in Malawi. However, the 

results of this study can open new products that can be offered by agencies that already 

offer agricultural insurance products. 

 

1.6 Structure of the study 

The study is structured as follows. We begin with the next chapter, which reviews 

related literature to see what other scholars and researchers have said about modelling 

temperatures. The third chapter discusses the development of daily average 

temperatures, followed by the stochastic method for simulating daily average 

temperatures and a description of a weather index distribution method to price weather 

derivatives. We end with the fourth and fifth chapters by discussing and analysing the 

results and making some concluding remarks.
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

This chapter will review the historical background of weather derivatives in section 2.1. 

It also looks at how temperature and pricing derivative models have been reviewed in 

sections 2.2 and 2.3, respectively.  

 

2.1 Historical background of weather derivatives 

Weather is a significant factor in many commercial operations, and unforeseen weather 

catastrophes can result in substantial financial losses. For instance, mild summers 

lessen demand for power and hence utility businesses' profit margins; less snowfall in 

the winter raises ski resort running expenses; and droughts result in poorer agricultural 

output. Weather risk refers to the unfavourable financial effects of climatic variation. 

As per (Allianz, 2013), weather and climate directly or indirectly impact nearly 30% of 

US GDP ($5.7 trillion out of $15.7 trillion), and extreme weather risk affects 70% of 

US enterprises. The same survey also shows how vulnerable many firms are to even 

minute variations in the weather. According to estimates, regular weather volatility 

impacted $534 billion, or 3.4%, of the US GDP in 2012. 

 

Weather derivatives, catastrophe bonds, and insurance can all be used to reduce weather 

risk. Traditionally, insurance has handled severe weather risk on an indemnity basis. 

The disadvantage of this approach is that filing claims is typically expensive and time-

consuming. Furthermore, as (Hess, et al., 2002) point out, there is a shortage of 

acceptable forms of collateral, government interventions, and information asymmetry 

in private insurance, which results in high unit transaction costs, restricted distribution 

of institutions, and restricted access to people experiencing poverty.
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Catastrophe bonds were first introduced in the mid-1990s. Through these bonds, 

weather risk can be shifted to capital market investors, who can access a considerably 

greater pool of resources than the insurance sector. Bond payments are correlated with 

an industry-wide loss or a weather index in catastrophe bonds, which mitigates the 

knowledge asymmetry issue. In comparison to insurance contracts, they also offer more 

prompt payments. 

 

Weather derivatives convey weather risk to capital market investors in a manner akin 

to catastrophe bonds. Their profits are reliant on easily measurable climatic 

occurrences. Weather derivatives are intended to hedge the adverse financial effects of 

regular weather variance rather than those of exceptional weather-related occurrences, 

in contrast to catastrophe bonds. As a weather option included in a power contract, the 

first weather derivative transaction was carried out by Aquila in 1997 (Considine, 

2000). Since then, the deregulation of the US energy sector has led to a sharp expansion 

of the weather derivatives market. 

 

Therefore, improved weather risk management is necessary when deregulation 

increases competition among energy suppliers. The range of meteorological variables 

covered by weather derivatives has increased to include temperature, precipitation, 

snowfall, wind speed, humidity, and other factors to meet the demands of diverse 

market players. They have durations ranging from a week to several years, and their 

transaction sizes cover tiny risks up to several hundred million dollars or more for more 

extensive exposures. The London International Financial Futures and Options 

Exchange (LIFFE), the Chicago Mercantile Exchange (CME), and the Intercontinental 

Exchange (ICE) now offer standardized weather derivatives, even though the majority 

of weather derivative transactions still take place over the counter. 

 

We focus on the most traded weather derivatives in the market, temperature derivatives, 

and this study focuses on the GDD Index. Two main steps are usually involved in 

pricing temperature derivatives. Firstly, a model for temperature dynamics must be 

built. Next, the second phase involves utilizing the presumptive model to obtain 

analytical or numerical estimations of weather derivative pricing to hedge crop yield. 
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2.2 Temperature process models 

According to (Dzupire et al., 2018; Alaton, 2002), the temperature process's four 

characteristics include seasonality, long-term trends, unpredictability, and mean 

reversion. The temperature process varies in value throughout the year due to 

seasonality. A well-defined model should include all of these temperature 

characteristics.  

 

Dornier and Queruel, (2000) modelled temperature fluctuations as a regression between 

daily deseasonalized temperatures. The suggested model divides the daily average 

temperature evolution into two sections, namely seasonal trend and random walk. 

Seasonal change and global warming are included in the formulation of seasonality as 

a sine function. However, this model was lacking and did not consider the seasonality 

and instability of temperature. 

 

By describing volatility as a piece-wise constant function that represents the monthly 

variance in volatility, (Alaton, 2002) updated the model by Dornier and Queruel (2000). 

Their choice of volatility was confirmed by the observation that the quadratic variation 

of the volatility was practically constant over each month in the data set. Despite the 

lack of a statistical test for normality, the Wiener process was chosen as the driving 

noise in the model since the observed temperature differences were almost normal. 

Possible time dependencies in the residuals seen in the regression models are not 

mentioned in either study. 

 

According to (Brody, 2002), temperature dynamics are represented using a stochastic 

process known as fractional Brownian motion, where the temperature change is 

regressed on the deseasonalized temperature from the day before. Based on a data series 

of daily average temperatures from Central England, it was possible to see evidence of 

fractional behaviour in temperature swings after subtracting the seasonal mean. The 

authors did not conduct the same fractional analysis for the model's residuals, as noted 
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by (Benth, & Šaltyt-Benth, 2005). Hence, it is unclear if the residuals' time dependence 

will exhibit characteristics of fractional noise. According to the argument (Dornier & 

Queruel, 2000),  one should include seasonal variation changes in the model to obtain 

a reliable mean reversion model. 

   

A mean-reverting model powered by a Lévy process was developed by (Benth, 2003; 

Dornier & Queruel, 2000) based on the Ornstein-Uhlenbeck (O-U) model. This came 

about because actual data from Norway rejected the normality test. In addition, the 

model's variance is a function with an empirical foundation estimated from observed 

variances. A flexible distribution that can capture the semi-heavy tails and skewness 

shown in the data is recommended: a generalized hyperbolic distribution. The Lévy 

process complicates the concept, which assumes constant mean reversion speed. 

Additionally, the application of AR (1) misses the gradual decrease in temperature 

autocorrelations, which may materially undervalue weather derivatives. 

 

In a related study (Benth & Šaltyt-Benth, 2005), the authors developed an O-U mean 

reversion model with Brownian motion as the driving noise and the seasonal mean and 

volatility as truncated Fourier series. Both series' order was decided upon randomly, 

and no statistical analysis was done to determine the importance of each parameter. A 

closed-form solution for pricing weather derivatives was discovered to be possible 

using the model, which could also capture temperature dynamics. In Benth and Šaltyt-

Benth (2011), a different model from the O-U is put forth as a continuous time 

autoregressive model for the temperature dynamics, with the volatility function being 

the product of the seasonal function and a stochastic process using the Barndoff-Nielsen 

and Shephard model for stochastic volatility. 

 

 Alexandridis and  Zapranis (2006) extended the O-U mean reverting model developed 

by (Benth & Šaltyt-Benth, 2005) with seasonality in the level and volatility, validated 

by more than 100 years of temperature data collected in Paris. Unlike (Benth, & Šaltyt-

Benth, 2005) here, wavelet analysis is used to identify the seasonality component in the 

temperature process and the volatility of the temperature residuals. It was observed that 

the distribution statistics of the residuals of AR (1) showed the presence of negative 
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skewness and positive kurtosis (> 3), indicating a significant deviation from the normal 

distribution. In addition, the effect of replacing the AR (1) process with ARMA, 

ARFIMA, and ARFIMA-FIGARCH was also explored. However, all these processes 

failed to capture the slow time decay of the autocorrelations of temperature. 

  

In order to study the time dependence of the mean reversion parameter k(t) on time, 

Alexandridis (2008) created an O-U stochastic temperature model driven by the Wiener 

process. He then employed neural networks to analyse the model's results. The model 

is discretized as an AR (1) model and is an extension of the (Benth & Šaltyt-Benth, 

2005) generalization of (Dornier & Queruel, 2000) work. 

 

A series of daily values of k(t) are obtained by non-parametrically estimating the 

temperature process using neural networks and computing the derivative of the network 

output concerning the input. This eliminates the restriction of a constant mean reversion 

speed in some models. The results indicate that the speed of mean reversion varies quite 

a bit daily; therefore, expressing the speed as a function of time increases the model's 

accuracy and dramatically lowers the cost of weather derivatives. 

 

For the Zhengzhou region, Wang et al. (2015) created a workable model of the daily 

average temperature that is used in weather derivative pricing. Then, using 62 years of 

daily historical data, they applied the mean-reverting Ornstein-Uhlenbeck process to 

characterize the temperature evolution after researching the history of the weather 

derivatives market. Chen et al., . (2018) used SARIMA (Seasonal Autoregressive 

Integrated Moving Average) techniques to analyse the monthly mean temperature in 

Nanjing, China, from 1951 to 2017. The training set includes data from 1951 to 2014, 

and the testing set includes data from 2015 to 2017.  

 

Additionally, Nury and Koch (2013) established ARIMA (Auto Regressive Integrated 

Moving Average) models and applied them to provide short-term forecasts of the 

monthly maximum and minimum temperatures in the northeast Bangladeshi districts of 

Sylhet and Moulvibazar. Like Benth and Šaltyt-Benth (2005) and Alaton, (2002), this 
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O-U mean reversion model uses the truncated Fourier series to express volatility as a 

cyclic function. 

 

2.3. Pricing models of weather derivatives 

The literature empirically demonstrates the presence of climate modelling and its 

impact on the electricity market, as Weron (2014) demonstrates. This study's findings 

imply that temperature may partially explain the predictable behaviour of power 

pricing, which has been consistently proven by the literature on electricity price 

forecasting to be governed by geographical and temporal variables. 

 

 

Uncertainty was reduced using an earlier strategy (Atalon et al., 2002; Richards, 2004) 

and later adopted by (Svec & Stevenson, 2007; Taştan & Hayfavi, 2017). The Sydney 

accumulated heating degree day (HDD) and cooling degree day (CDD) index levels 

were forecasted by  Svec and Stevenson (2007) using time series and stochastic 

techniques to model pricing. Similarly, (Alaton, 2002) developed a pricing model for 

weather derivatives with pay-outs based on temperature, for which they conducted 

Monte Carlo simulations on a mean-reverting process. Using a mean-reverting process 

driven by a Lévy process to depict jumps and other temperature aspects that may play 

a significant role in the deviations for specific places (Taştan & Hayfavi, 2017) 

computed the temperature index. In conclusion, a generic pricing strategy for weather 

derivatives was proposed by (Richards, 2004) for cooling degree day weather options 

in Fresno, California. The temperature follows a mean-reverting Brownian motion 

process with discrete jumps and autoregressive conditional heteroscedastic errors, 

which they discovered using specification tests. They developed an equilibrium price 

model based on this procedure for the cooling degree day weather possibilities. 

 

 

Weron (2014) offers more justification for his projection of the power price. Weron 

(2014) sought to clarify the complexity of the currently available solutions, their 

advantages and disadvantages, and the potential dangers that forecasting tools present. 
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The Black-Scholes equation was then used by (Prabakaran, 2018) to construct an 

option-pricing model for energy derivative markets. 

 

Many writers have utilized the Black-Scholes model (Black & Scholes, 1973), which 

can be employed independently or as part of a portfolio, to estimate option pricing based 

on features. The Black-Scholes model's applicability to weather derivatives has been 

examined in the literature (Botoş & Ciumaş, 2012). The Black-Scholes model, 

however, did not perform well with a weather index, according to the results, which 

were attributed to mathematical and economic discrepancies. According to these 

authors (Botoş & Ciumaş, 2012), the models could be applied to portfolios that include 

weather derivatives. In addition, (Brody, 2002) proposed a fractional version of the 

Ornstein-Uhlenbeck process. By taking into account the memory effect and partial 

differential equations, they were able to derive the cost formulas for the most widely 

used temperature indices, such as heating Degree Day (HDD), cooling Degree Day 

(CDD), and cumulative average temperature (CAT). The same fractional Ornstein-

Uhlenbeck process was then used in (Benth, 2003) to propose an arbitrage-free model 

for derivatives based on temperature, together with quasi-conditional expectation and 

Wick Itô Skorohod (WIS) integrals of the fractional Brownian motion (fBm). Oksendal 

(2014) created the WIS integrals of the fBm. In addition to the pricing for contracts as 

in (Benth, 2003), the dynamics of the option values are derived. The autocorrelation 

feature of the return time series is attempted to be modelled using various approaches. 

Fractional Brownian motion (fBm) is one of these attempts. The primary source cited 

was Oksendal (2014) (Prabakaran et al., 2020). Fraction Brownian Motion (FBM) was 

utilized to price temperature derivatives on energy using option pricing. 

 

 

Although financial weather derivatives in agriculture have not been as widespread as 

in the energy industry, studies have examined using historical data to create heat or 

rainfall index-based weather derivatives (Sun, & Lou, 2013). This study proposes 

weather derivatives in agriculture hedging crop yields using temperature derivatives 

developed by (Patricia, 2021) that modelled the average temperature and designed a 

growing degree day (GDD) European put option for rice in Laguna. Patricia's (2021) 

study concentrated on modelling temperature during the rainy season, which is similar 

to what (Kooten, 2015 and Sun, 2017) did. However (Kooten, 2015) also concentrated 
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on pricing using financial derivatives to protect the output of corn crops by contrasting 

several approaches to calculate the price of weather derivatives using Growing Degree 

Day (GDD)  

 

It has been observed that these studies (Sun, 2017; Kooten, 2015; Patricia, 2021; Sun, 

& Lou, 2013) did not take into consideration that such agriculture can also be done 

through irrigation where temperatures are not controlled, as compared to agriculture 

done in the rainy season where the rain drops to control the air temperature (Means, 

2018). It has also been observed that their pricing is just a vanilla option, which is also 

expensive. Hence, this study focuses on hedging crop yield against extreme 

temperatures during irrigation farming, which is being done without a greenhouse as it 

is prone to an extreme temperature that affects crop yields. Furthermore, it involves 

down-and-out barrier option pricing, which is cheaper than the vanilla option. 

To sum up this chapter, these models reviewed will help develop temperature 

stochastical models and pricing models in the agricultural sector in the next chapter. 

This will involve utilizing the presumptive model to obtain analytical or numerical 

estimations of weather derivative pricing to hedge crop yield. 
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CHAPTER THREE 

METHODOLOGY 

 

This chapter will discuss different methods and principles used in the study. These will 

include the sampling procedure, data collection tool and techniques and method data of 

analysis. Such that in section 3.1 we look at daily average temperature data. This is 

followed by Temperature indices in section 3.2. In section 3.3, we have a daily average 

temperature stochastical model. While pricing weather derivatives in an incomplete 

market and temperature barrier option pricing will be discussed in sections 3.4 and 3.5, 

respectively 

3.1 Daily average temperature data 

The data in this study is from the Kasungu district. It has been chosen because it is the 

top-list district that grows maize under irrigation during the rainy and dry seasons, 

which feeds a good percentage of Malawians (Phiri, 2016). Low maize yields in this 

district will lead to hunger and affect the country's economy.   

 

From January 1 1990, through December 31 2020, historical data on daily minimum 

and maximum temperatures were gathered from the Department of Climate Change and 

Meteorological Service's headquarters. This sample size of 31 31-year years will ensure 

we accurately capture the long-term trend to forecast future temperatures. The missing 

data was treated by finding the average temperature adjacent to the missing data, 

carrying forward the last observation, and carrying backwards the following 

observation. All the leap years have been dropped.
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3.2 Temperature indices 

The temperature information collected from a given station in a given area is the 

foundation for temperature indices. If 𝑇𝑖
𝑚𝑎𝑥 and 𝑇𝑖

𝑚𝑖𝑛 are the highest and lowest 

temperatures recorded at a meteorological station on day 𝑖, respectively, the Daily 

Average Temperature (DAT) on that day is calculated as  

𝑇𝑖 =
(𝑇𝑖

𝑚𝑎𝑥+𝑇𝑖
𝑚𝑖𝑛)

2
                                                                                            (1) 

A base temperature, the required temperature for a crop to germinate, and the daily 

average temperature (DAT) are two variables that determine how many degrees a day 

there are. The heat that must build up each day for a crop to grow, sprout new leaves, 

reach the reproductive stage, and eventually mature is known as the growing degree 

day (Patricia P. et al., 2021). We consider maize crops to be produced under irrigation 

from August to December. Maize requires at least 100C. GDD is defined as:  

        𝐺𝐷𝐷𝑖 = max⁡{𝑇𝑖 − 10,0}                                                                         (2) 

and the GDD for the whole 153-day period as, 

         𝐺𝐷𝐷 = ∑ 𝐺𝐷𝐷𝑖
153
𝑖=1                                                                                  (3) 

The 153-day period spans the period for maize crops from germination up to harvest. 

 

3.3 Daily average temperature Stochastic model 

Modelling daily average temperature is a hazardous task because multiple variables 

govern weather. We will obtain information about temperature behaviour, which is 

possible to assume as regular because temperature changes follow a cyclical pattern, 

although with some variability. Hence, it is essential to carefully validate the specified 

model before putting it into practical use for pricing weather derivatives. The modelling 

approach specifies a stochastic process of temperature evolution by selecting it from a 

parameterized family of processes.  

3.4 A Gaussian Ornstein-Uhlenbeck Model for Temperature 

Temperature has a mean-reverting evolution, meaning it can only briefly vary from its 

mean value. The mean-reverting Ornstein-Uhlenbeck process predicts temperature 
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behaviour by considering seasonal variation and long-term trends. The daily average 

temperature variation will return to the mean in the long run. 

We consider the stochastical process model by putting together seasonality, long-term 

trends, unpredictability, mean reversion, and temperature.  

𝑑𝑇𝑡 = 𝑑𝑇𝑡
𝑚 + 𝑘(𝑇𝑡

𝑚 − 𝑇𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡                                                               (4) 

Proposition 3.1 (Alaton, 2010; Brody, 2002; Peter Alaton, 2002): If the Daily Average 

Temperature (DAT) follows an Ornstein-Uhlenbeck process with a mean reversion that 

is mean-reverting and whose speed varies over time as well as a seasonal mean and 

variance: 

    𝑑𝑇𝑡 = 𝑑𝑇𝑡
𝑚 + 𝑘(𝑇𝑡

𝑚 − 𝑇𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡  

The Ito formula yields the following implicit solution:  

𝑇𝑡 = 𝑇𝑡
𝑚 + 𝑒∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢(𝑇𝑠

𝑚 − 𝑇𝑠) + 𝑒∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢 +∫ 𝜎𝑠

𝑡

𝑠

𝑒−∫ 𝑘(𝑢)
𝑡
𝑠 𝑑𝑢𝑑𝑊𝑡 

which is the same as the following: 

𝑇𝑡 = [𝑇𝑠
𝑚 − 𝑇𝑠]𝑒

−𝑘(𝑡−𝑠) + 𝑇𝑡
𝑚 + ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟

𝑡

𝑠
                            (5) 

Proof: Let us rewrite 𝑑𝑇𝑡 = 𝑑𝑇𝑡
𝑚 + 𝑘(𝑇𝑡

𝑚 − 𝑇𝑡) + 𝜎𝑡𝑑𝑊𝑡 as 

𝑑𝑇̂𝑡 = 𝑘𝑇̂𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡 

Where 𝑇̂𝑡 = (𝑇𝑡 − 𝑇𝑡
𝑚). The following transformation is practical for solving the 

stochastic equation above: 

G(𝑇̂, 𝑡) = 𝑒−∫ 𝑘(𝑢)
𝑡
0

𝑑𝑢𝑇̂𝑡 

Making use of the Ito lemma 

 
𝜕𝐺

𝜕𝑇̂
= 𝑒−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢,
𝜕2𝐺

𝜕𝑇̂𝑡
2 = 0,

𝜕𝐺

𝜕𝑡
= −𝑘𝑒−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢𝑇̂𝑡 

and 𝑎 = ⁡𝑘(𝑡)𝑇̂𝑡⁡ 

𝑏 = 𝜎𝑡 
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We have that 

𝑑𝐺𝑡 = (𝑘𝑒−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑇̂𝑡 − 𝑘𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢𝑇𝑡)𝑑𝑡 + 𝜎𝑡𝑒

−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑑𝐵𝑡 

Which reduces to  

𝑑𝐺𝑡 = 𝜎𝑡𝑒
−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢𝑑𝐵𝑡 

Suppose⁡𝑠 < 𝑡, then integrating the above equation, we have that 

𝐺𝑡 − 𝐺𝑠 = ∫ 𝜎𝑡𝑒
−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢𝑑𝐵𝑡

𝑡

𝑠

 

And replacing G, we have that 𝑒−∫ 𝑘(𝑢)
𝑡
0

𝑑𝑢𝑇̂𝑡 − 𝑇̂𝑠 = ∫ 𝜎𝑡𝑒
−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢𝑑𝐵𝑡
𝑡

𝑠
 

By rearrangement, we achieve that 

𝑇̂𝑡 = 𝑒−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑇̂𝑡 + 𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢∫ 𝜎𝑡𝑒

−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑑𝐵𝑡

𝑡

𝑠

 

Since 𝑇̂𝑡 = (𝑇𝑡 − 𝑇𝑡
𝑚), 

(𝑇𝑡 − 𝑇𝑡
𝑚) = 𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢(𝑇𝑠 − 𝑇𝑠

𝑚) + 𝑒−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢∫ 𝜎𝑡𝑒

−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑑𝑊𝑠

𝑡

𝑠

 

Finally, by rearranging, we prove the proposition 

𝑇𝑡 = 𝑇𝑡
𝑚 + 𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢(𝑇𝑠 − 𝑇𝑠

𝑚) + 𝑒−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢 +∫ 𝜎𝑠

𝑡

𝑠

𝑒−∫ 𝑘(𝑢)
𝑡
𝑠 𝑑𝑢𝑑𝑊𝑠 

Since 𝑠 = 𝑡 − 1`and 𝑢 = 𝑡 − 𝑠 hence 

𝑇𝑡 = [𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ]𝑒−𝑘(𝑡−𝑠) + 𝑇𝑡

𝑚 + ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟
𝑡

𝑠
                ∎ 

In equation (5), 𝑊𝑟 is the Brownian motion, 𝜎𝑡 is the deterministic function of time 𝑡, 

the random variable ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟
𝑡

𝑠
 is normally distributed with mean zero and a 

variance ∫ 𝑒−2𝑘(𝑡−𝑟)𝜎𝑟
2𝑑𝑊𝑟

𝑡

𝑠
.  
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The Brownian motion's characteristic of independent increments forms the foundation 

of the proof. The filtration ℱ𝑠 leads us to the conclusion that 𝑇𝑡 is normally distributed, 

with mean and variance given by: 

            𝐸𝑝[𝑇𝑡|ℱ𝑠] = [𝑇𝑠 − 𝑇𝑡
𝑚]𝑒−𝑘(𝑡−𝑠) + 𝑇𝑡

𝑚                                                         (6) 

𝑉𝑡
2 = 𝑣𝑎𝑟[𝑇𝑡|ℱ𝑠] = ∫ 𝑒−2𝑘(𝑡−𝑟)𝜎𝑟

2𝑑𝑟
𝑡

𝑠
.                                                           (7) 

We now explicitly describe the equation's (3) expression when 𝑠 = 𝑡 − 1. I get  

𝑇𝑡 = [𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ]𝑒−𝑘(𝑡−𝑠) + 𝑇𝑡

𝑚 + ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟
𝑡

𝑡−1
.                             (8) 

The variable ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟
𝑡

𝑡−1
 is a random variable having a Gaussian distribution, 

mean zero, and variance: 

𝑉𝑡
2 = 𝑣𝑎𝑟[𝑇𝑡|ℱ𝑡−1] = ∫ 𝑒−2𝑘(𝑡−𝑟)𝜎𝑟

2𝑑𝑟
𝑡

𝑡−1
.                                                    (9) 

Therefore, we can write (8) as  

𝑇𝑡 = [𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ]𝑒−𝑘 + 𝑇𝑡

𝑚 + 𝜎𝑡𝜀𝑡.                                                            (10) 

This means that (6) has a simple discrete time representation with an autoregressive 

structure of order 1 (AR (1)). This result has significant implications for the estimate of 

the unknown. This indicates that (6) has a straightforward discrete time representation 

with an order 1 autoregressive structure (AR (1)). This outcome significantly impacts 

the estimation of the unknown parameter in the equation above. Since the variable in 

the case of 𝑇𝑡 is observed at discrete points in time rather than constantly, estimating in 

continuous time is generally quite challenging. The likelihood function can only be 

analytically expressed for a small subset of processes. The Ornstein-Uhlenbeck process 

is one of them and is illustrated in (10). These models can be calculated with precision 

using techniques like maximum likelihood. Although they use a two-step estimation 

method, Atalon (2002) never assume that a generalized Ornstein-Uhlenbeck process 

permits flawless discretization. The model of average temperature 𝑇𝑡 in day 𝑡 is given 

as follows as a result of applying the parameterized maximum likelihood method for 

equation (10) 
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𝑇𝑡 = 𝛼[𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ] + 𝑇𝑡

𝑚 + 𝜎𝑡𝜀𝑡 ,                                                                 (11) 

with 𝛼 = 𝑒−𝑘⁡𝑎𝑛𝑑⁡where, 𝜀𝑡∼ N(0, 1), the deterministic portion of the temperature is 

𝑇𝑡
𝑚, the volatility is 𝜎𝑡, and 𝛼 is the mean reversion speed. When coming up with this 

deterministic part, we consider the combination of seasonality, trend, and expression of 

the sine function shift. Hence, it is given by the expression: 

𝑇𝑡
𝑚 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌)                                                                      (12) 

𝜔 =
2𝜋

365
 

where 𝑇𝑡
𝑚⁡shows the predicted temperature for a day with t in 2021, where the number 

of days in a year is given by⁡𝑡 (1–365), Variable A represents the average daily air 

temperature for the period from 1.1.1990 to 31.12.2020, variable B describes the impact 

of an annual global warming trend, and variable C establishes the seasonality of 

temperatures throughout the year, or how much the winter and summer temperatures 

deviate from the annual temperature mean. Since the highest and lowest temperatures 

neither happen at the beginning nor the middle of the year, this phenomenon is known 

as phase shift, denoted by 𝜌. 

Using trigonometric formula, we have 

𝑇𝑡
𝑚 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌) 

= 𝐴 + 𝐵 + 𝐶1 sin(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) 

Where 

 

𝑐 = √𝑐1
2 + 𝑐2

2⁡ 

𝜌 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑐2
𝑐1
) − 𝜋 

Similarly, based on practical findings, we define the cyclic nature of the function  𝛿2 

(Benth & Benth, 2005; Zapranis & Alexandridis, 2014). 



   

22 

 

𝛿2 = 𝑐 + ∑ 𝑐𝑖sin⁡[
2𝜋𝑖

365

𝐼
𝑖=1 ] + ∑ 𝑐𝑖cos⁡[

2𝜋𝑖

365

𝐽
𝑗=1 ] ………………………. (13) 

Based on past temperature records, variables A, B, and C, along with the shift 𝜌, will 

be determined. In equation (12)(Alexandridis A. K. and Zapranis A. D, 2014; Benth, 

F.E., & Šaltyt-Benth, 2005) 

𝛿2 = 𝑐 + ∑ 𝑐𝑖sin⁡[
2𝜋𝑖

365

𝐼
𝑖=1 ] + ∑ 𝑐𝑖cos⁡[

2𝜋𝑖

365

𝐽
𝑗=1 ] ………………………. (13) 

Variables A, B and C and the shift ρ will be calculated based on historical temperature 

data. 

In equation (12), Alaton et al. (2002) concentrated on the seasonality, trend and the sine 

function's shift expression. Atalon et al. (2002) modelled the long-term temperature 

model, which may be less applicable in the short term. They made the assumption 

known as homoscedasticity that variance would be constant over time. However, 

according to (Niyitegeka & Tewari, 2013), empirical evidence has disputed this 

supposition. When calm and volatile periods are observed in time series, volatility 

clustering is known to occur, making the variance at least appear predictable. Since 

temperature data is a time series, it may display significant auto-correlation. Hence, we 

propose to extend this (Atalon et al., 2002) by relaxing the assumption concerning 𝜀𝑡 

to (12) and allowing 𝜀𝑡 to be autocorrelated. So it will be 

𝑇𝑡
𝑚 = 𝐴 + 𝐵 + 𝐶1 sin(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) + 𝜀𝑡, 𝜀𝑡|𝐹𝑡−1~𝑁(0, 𝜎𝑡

2)                     (14) 

 

Assume 𝜀𝑡 follows the GARCH model (Generalized Autoregressive Conditional 

Heteroskedastic). According to (Niyitegeka & Tewari, 2013). GARCH forecasts future 

variability and addresses the issue regarding heteroskedasticity, or the time series' non-

linear variability. The conditional variance can depend on prior lags in the GARCH 

model, which uses the maximum likelihood method. The following is how the 

conditional variance equation is written. 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛽𝜎𝑡−1

2𝑝
𝑗=1 + ∑ 𝛼1𝜀𝑡−1

2𝑞
𝑖=1  ……………………………………………… 

(15) 

This replaces equation (13) where 𝛼0 has been substituted by 𝑐. 𝜎𝑡
2 is the volatility at 

time⁡𝑡. 𝛼1 has also been substituted by 𝑐𝑖 sin(𝑤𝑡), and  𝛽 has been substituted by 
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𝑐𝑖 cos(𝑤𝑡) . 𝜀𝑡−1⁡
2  is the previous period’s squared error term. 𝜎𝑡−1

2 , is the previous 

period’s volatility. 

 Proposition 3.2. (Brody, 2002). If 𝑇𝑡
𝑚 = 𝐸[𝑇𝑡], the process 

𝑑𝑇𝑖 = [𝛼(𝑇𝑡
𝑚 − 𝑇𝑡) +

𝑑𝑇𝑡
𝑚

𝑑𝑡
]⁡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡   reverts to 𝑇𝑡

𝑚.  

Proof. : Let 𝑍𝑡 = 𝑒∫ 𝛼𝑑𝑠
𝑡
0 (𝑇𝑡

𝑚 − 𝑇𝑡)          

Ito’s lemma 

𝑑𝑍𝑡 =  𝑒∫ 𝛼𝑑𝑠
𝑡
0  𝑇𝑡

𝑚𝑑𝑡 + 𝛼𝑒𝛼𝑡(𝑇𝑡
𝑚 − 𝑇𝑡)dt- 𝑒∫ 𝛼𝑑𝑠

𝑡
0 𝑑𝑇𝑡 

=  𝑒∫ 𝛼𝑑𝑠
𝑡
0 [(𝑇𝑡

𝑚 + 𝛼(𝑇𝑡
𝑚 − 𝑇𝑡)𝑑𝑡 − (𝛼(𝑇𝑡

𝑚 − 𝑇𝑡) + 𝑇𝑡
𝑚)𝑑𝑡 − 𝜎𝑡𝑑𝑊𝑡 

∴ 𝑍𝑡 = 𝑍0 −∫𝑒∫ 𝛼𝑑𝑠
𝑡
0 𝜎𝑠𝑑𝑊𝑠

𝑡

0

 

∴   𝑒∫ 𝛼𝑑𝑠
𝑡
0 (𝑇𝑡

𝑚 − 𝑇𝑡) = 𝑇0
𝑚 − 𝑇0 − ∫ 𝑒∫ 𝛼𝑑𝑠

𝑡
0 𝜎𝑠𝑑𝑊𝑠

𝑡

0
     

Now 𝑇0
𝑚 − 𝑇0 = 𝑐⁡𝑔𝑖𝑣𝑒𝑠 

𝑇𝑡
𝑚 − 𝑇𝑡 = −𝑒∫ 𝛼𝑑𝑠

𝑡
0 ∫𝑒∫ 𝛼𝑑𝑠

𝑡
0 𝜎𝑠𝑑𝑊𝑠

𝑡

0

 

∴ 𝑇𝑡 = 𝑇𝑡
𝑚 + 𝑒∫ 𝛼𝑑𝑠

𝑡
0 ∫𝑒∫ 𝛼𝑑𝑠

𝑡
0 𝜎𝑠𝑑𝑊𝑠

𝑡

0

⁡ 

⇒ 𝐸[𝑇𝑡] = 𝑇𝑡
𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∎ 

 

3.5 Pricing weather derivatives in an incomplete market 

The weather derivatives market is an example of an incomplete market because the 

fundamental variable temperature cannot be traded. In order to establish distinct pricing 

for such contracts, a risk's market value is added. The cost of risk is assumed to be 

constant to maintain simplicity. Furthermore, the tick price is determined at $1 per 

degree day, and the risk-free interest rate, 𝑟, is assumed to remain constant. Typically, 

a risk-neutral valuation approach is used to price financial derivatives. According to the 
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financial theory, a contingent claim's cost F, which is based on stochastic variable 𝐼, 

can be determined as follows (Dzupire et al., 2019; Xu et al., 2007): 

⁡⁡⁡⁡⁡⁡⁡⁡𝐹 = 𝐸𝑄(𝐷,𝑊𝑇(𝐼))                                                                                                   (16) 

𝐼 can be a traded asset, like a stock, or untraded, like a weather index. At expiry time, 

T, W represents the payoff of the derivative, and D represents a discount factor 𝑒−𝑟𝑇 

with a free rate. The subscript Q indicates that the expectation of the derivative payoff 

is to be calculated by replacing a real-world probability with risk-neutral probability 

measurements, and E denotes an expectation conditional on the information now 

available (Dzupire et al., 2019) 

Equation (18) can be written as  

𝐹 = 𝑒−𝑟𝑇𝐸𝑃(
𝑑𝑄

𝑑𝑃
 𝑊𝑇(𝐼))                                                                                                     (17) 

  
𝑑𝑄

𝑑𝑃
 shows the Radon-Nikodym derivative of Q concerning P.  

With the change of neutral measure, the stochastic process of 𝐼 becomes a martingale. 

If the stock moves with a geometric Brownian motion, reducing the drift to a risk-free 

rate can lead to a change in measure. 

However, the market is insufficient if indexes cannot be traded since a self-financing 

portfolio cannot reproduce the derivative. As a result, it is impossible to use no-

arbitrage pricing methods for weather derivatives because we cannot create a portfolio 

free of risk that combines weather index and derivative (Xu et al., 2007). Additionally, 

the no-arbitrage criterion does not produce a distinctive pace because there are 

numerous martingale measures. Therefore, only contingent claims secured by bonds 

may be achieved (Dzupire et al., 2019). Formally, we have a range  

[Inf
𝑄
𝑒−𝑟𝑇 𝐸𝑃(

𝑑𝑄

𝑑𝑃
,⁡𝑊𝑇(𝐼))⁡, Sup

𝑄
𝑒−𝑟𝑇 𝐸𝑃(

𝑑𝑄

𝑑𝑃
,⁡𝑊𝑇(𝐼))]                                                            (18) 

The interval in equation (14) is exceedingly significant and, therefore, useless, where 

Q indicates the set of all equivalent martingale measures (Xu, Wei, Martin Odening, 

2007). By engaging in dynamic trading, the investor seeks to maximize the anticipated 

utility of the final wealth and minimize risks associated with the uncertain reward in an 

incomplete market. The objective is to find a method that maximizes the expected 

utility of terminal wealth under the physical measure while minimizing risks as 

measured by a risk measure.  
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3.6 Temperature barrier option pricing 

A barrier option operates similarly to a standard option until the underlying asset's price, 

X, crosses a predetermined barrier, B (Primajati, 2020). The feature of the selection is 

either a knock-in or a knock-out. If an option is knocked in, it has no value unless the 

asset price passes the threshold. When an option is knocked out, it loses its value once 

the asset's price crosses the threshold. The barrier must be crossed in the direction 

indicated by the arrows going up and down. In addition to X and B, the strike price K, 

interest rate r, time to maturity T, dividend rate q, and volatility σ are the input 

arguments utilized to determine the value of barrier options. 

Barrier options are one of the most frequently traded derivatives on the financial 

markets, claim (Wang & Wang, 2011); they stand out from standard solutions thanks 

to their unique qualities. The fact that barrier options are typically less expensive than 

standard options is one reason for the payoff; the asset price must pass a particular 

threshold first. The third factor is that barrier options better-fit risk hedging 

requirements than conventional options. 

Farmers may buy a call option if the price is anticipated to be higher. Sun (2017) and 

Kooten (2015) provide the payoffs for the call contracts from the purchasers' 

perspective. 

                        𝑃(𝑥)𝑐𝑎𝑙𝑙 = {
0,   𝑥 < 𝑘

 𝐷(𝑥 − 𝑘), 𝑥 ≥ 𝑘
                                             (19) 

𝑃(𝑥) denotes the option payoff, D is the tick size (the amount of money for each 

weather index unit), and 𝑘 is the strike (trigger) value. Equation (19) also is the payment 

of the barrier down and out call option for the barrier temperature option, where the k 

is now the barrier level. 

For barrier it is  

𝑃(𝑥)𝑐𝑎𝑙𝑙 = {
0,   𝑥 < 𝑘⁡𝑎𝑛𝑑⁡𝑥 < 𝐵

 𝐷(𝑥 − 𝑘), 𝑥 ≥ 𝑘⁡𝑎𝑛𝑑⁡𝑥 > 𝐵, 0 ≤ 𝑡 ≤ 𝑇
                                              (20) 

B is the barrier level, and x is the weather index (GDD). 

The GDD option depends on the sum of the GDD across the growth season, where each 

temperature process follows the Gaussian process, represented by 𝑇𝑡~𝑁(𝜇𝑡, 𝑣𝑡). We 
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can proceed once we get the conditional mean and variance of the GDD. The 

conditional mean and variance of 𝐺𝐷𝐷𝑛 for time  𝑡 < 𝑡1 can be calculated as follows: 

𝐺𝐷𝐷𝑛~(𝑁(𝜇𝑢, 𝜎𝑛
2) 

Where, 

        𝜇𝑢 = 𝐸ℚ[𝐺𝐷𝐷𝑛|ℱ𝑠] = ∑ 𝐸ℚ[𝑇𝑡𝑖|ℱ𝑡] − 𝑘,𝑛
𝑖=1                                                 (21) 

⁡𝜎𝑛
2 ≡ 𝑣𝑎𝑟ℚ[𝐺𝐷𝐷𝑛|ℱ𝑡] = ∑ 𝑣𝑎𝑟ℚ[𝑇𝑡|ℱ𝑡] + 2∑∑ 𝑐𝑜𝑣ℚ[𝑇𝑡𝑖, 𝑇𝑡𝑗]|ℱ𝑡]𝑖<𝑗 ⁡⁡𝑛

𝑖=1    

(22) 

The anticipated return is the following, assuming a normal distribution for the weather 

indicator used in a financial instrument: 

           𝐸𝑝 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑝(𝑥)𝑑𝑥,                                                       (23) 

Where 𝑝(𝑥) is the payment associated with the financial instrument for the potential 

outcome, 𝑥 is the weather index. This 𝑥, at some point, will reach the barrier level. The 

weather index's probability density function (PDF) is denoted by⁡𝑓(𝑥). When the 

weather index is transformed into a regular normal distribution, let 𝑧 =
𝑥−𝜇

𝜎
, and the 

expected pay-out function is as follows: 

          𝐸𝑝 = ∫ 𝜙(𝑧)𝑝(𝑧)𝑑𝑧 =
1

𝜎

𝑏

𝑎
∫ 𝜙(𝑧)𝑝(𝑥)𝑑𝑥
𝑏

𝑎
                                          (24) 

From equation (24), 𝜙(𝑧) signifies the PDF of the typical normal distribution, and 𝜎 is 

the standard deviation of the weather index. 

Inserting the payoff function for the call contract in the corresponding uncapped call 

options with closed-form functions are as follows when the expected pay-out function 

is entered: 

𝐸𝑝,𝐶𝐴𝐿𝐿 =
1

𝜎
∫ 𝐷(𝑥 − 𝑘)𝜙 (

𝑥−𝜇

𝜎
)𝑑𝑥 = 𝐷𝜎𝜙 (

𝑘−𝜇

𝜎
) + 𝐷(𝜇 − 𝑘) [1 − Φ(

𝑘−𝜇

𝜎
)] ,

∞

𝑘
         

(25) 

Multiplying the above by the difference of 𝑥⁡𝑎𝑛𝑑⁡𝐵⁡(𝑥 − 𝐵) gives us the call payoff of 

the barrier call option to be 

= (𝑥 − 𝐵) [𝐷𝜎𝜙 (
𝑘−𝜇

𝜎
) + 𝐷(𝜇 − 𝑘) [1 − Φ(

𝑘−𝜇

𝜎
)]]                                          (26) 
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Proposition 3.3: Therefore, the cost of the GDD call option at time 𝑡 < 𝑡1⁡ is as follows 

(Hung-Hsi Hua, 2008; Patricia, 2021; Peter, 2002; Sun, 2017): 

𝑐(𝑡) = 𝑒−𝑟(𝑡𝑛−𝑡)𝐸𝑄[𝑚𝑎𝑥⁡(𝐻𝑛 − 𝑘, 0)|⁡ℱ𝑡]                                                

= 𝑒−𝑟(𝑡𝑛−𝑡) ∫ (𝑥 − 𝑘)
∞

𝑘1
𝑓𝐻𝑛(𝑥)𝑑𝑥                                                                

= 𝑒−𝑟(𝑡𝑛−𝑡){(𝜇𝑛 − 𝑘)𝛷 (−
𝑘−𝜇𝑛

𝜎𝑛
) +

𝜎𝑛

√(2𝜋)
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2
}                                    (27) 

Here 𝑡𝑛 is time to maturity. The normal distribution's probability density function is 

𝑓𝐻𝑛 , and Φ represents the cumulative distribution function for the standard normal 

distribution. 

Proposition 3.4 The price of the down and out barrier call option is  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝑒−𝑟(𝑡𝑛−𝑡) {(𝜇𝑛 − 𝑘)𝛷 (−
𝑘−𝜇𝑛

𝜎𝑛
) +

𝜎𝑛

√2𝜋
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2
} (𝑥 − 𝐵)                           (28) 

 Proof of Proposition 3.3 

We know that 𝐻𝑛 ≡ 𝑥~(𝑁(𝜇𝑛, 𝜎𝑛
2). 𝐿𝑒𝑡⁡𝑢 = (

𝑥−𝜇𝑛

𝜎𝑛
),⁡ 

𝑡ℎ𝑒𝑛⁡𝑑𝑢 =
𝑑𝑥

𝜎𝑛
, 𝑑𝑥 = 𝜎𝑛𝑑𝑢, 𝑎𝑛𝑑⁡𝑥 = 𝜇𝑛 + 𝜎𝑛𝑢. 

∫ (𝑥 − 𝑘)
∞

𝑘

𝑓𝐻𝑛(𝑥)𝑑𝑥 = ∫ 𝑥
∞

𝑘

𝑓𝐻𝑛(𝑥)𝑑𝑥 − 𝑘∫ 𝑓𝐻𝑛

∞

𝑘

(𝑥)𝑑𝑥 

It is simple to calculate the right-hand side's second term in the manner shown below: 

𝑘∫ 𝑓𝐻𝑛

∞

𝑘

(𝑥)𝑑𝑥 = 𝑘 (1 − 𝑘∫ 𝑓𝐻𝑛

∞

𝑘

(𝑥)𝑑𝑥) 

= 𝑘 (1 − ⁡Φ (
𝑘 − 𝜇𝑛
𝜎𝑛

)) 

= 𝑘Φ(−
𝑘 − 𝜇𝑛
𝜎𝑛

) 

The first term ∫ 𝑥
∞

𝑘
𝑓𝐻𝑛(𝑥)𝑑𝑥 can be calculated as the follows: 

∫ 𝑥
∞

𝑘

𝑓𝐻𝑛(𝑥)𝑑𝑥 = ∫
𝑥

√2𝜋𝜎𝑛
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2

𝑑𝑥
∞

𝑘
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= ∫
𝜇𝑛 + 𝜎𝑛𝑢

√2𝜋𝜎𝑛
𝑒−

𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

 

= ∫
1

√2𝜋
⁡(𝜇𝑛 + 𝜎𝑛𝑢)𝑒

−
𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

 

= ∫ ⁡𝜇𝑛
1

√2𝜋
⁡𝑒−

𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

+∫ 𝜎𝑛𝑢
1

√2𝜋
⁡𝑒−

𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

 

= ⁡𝜇𝑛Φ(−
𝑘 − 𝜇𝑛
𝜎𝑛

) +
𝜎𝑛

√2𝜋
∫ 𝑢⁡𝑒−

𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

 

=⁡ ⁡𝜇𝑛Φ(−
𝑘 − 𝜇𝑛
𝜎𝑛

) +
𝜎𝑛

√2𝜋
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2

 

The following can be used to generate the second term of the final equation:  

∫ 𝑢⁡𝑒−
𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

= −𝑒−
𝑢
2

2

|𝑘−𝜇𝑛
𝜎𝑛

∞ ⁡ 

Therefore, ∫ (𝑥 − 𝑘)
∞

𝑘
𝑓𝐻𝑛(𝑥)𝑑𝑥 = (𝜇𝑛 − 𝑘)Φ(−

𝑘−𝜇𝑛

𝜎𝑛
) +

𝜎𝑛

√2𝜋
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∎ 

If equation (27), which determines the call price 𝑐(𝑡) is used, then  

{

𝜕𝑐𝑡

𝜕𝜇𝑛
> 0

𝜕𝑐𝑡

𝜕𝜎𝑛
> 0

                                                                                                                  (29) 

The claim above states that a rise in the mean 𝜇𝑛 will increase the price of temperature 

calls. Furthermore, the call prices will rise in proportion to the standard deviation 𝜎𝑛  

 

To summarise this chapter, we have seen that the temperature and pricing model has 

been modelled. Hence, in the next chapter, we will see whether these models predict 

the future temperature and price temperature derivative as a way of hedging maize crop 

yields using the given temperature data.
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

This section analyses and discusses analyses and discusses the study's objectives and 

results. The interpretation of the data was also tied to the literature reviewed. The data 

has been analysed mainly by R. Hence in section 4.1 we look at descriptive statistics. 

In section 4.2, we look at trend and seasonality followed by estimation of mean 

reverting speed in section 4.3. Volatility of the temperature process has been calculated 

in section 4.4 and lastly, we look at hedging maize crop yield using modelled pricing 

model. 

 

4.1 Descriptive statistics 

This study examines the daily average temperature data recorded in degrees Celsius in 

Malawi's Kasungu area. The data spans the years 1990 to 2020, and 11315 data series 

are included. The temperature readings on February 29 of every leap year have been 

dropped to preserve consistency over time. Kasungu district is located in Malawi's 

central area. 

  

A significant sample, which risks estimating parameters being changed by dynamics 

that no longer represent future temperature behaviours, including urban influences, is 

considered a worse sample to research temperature dynamics than 31 years. On the 

other hand, if the period is short, crucial dynamics may not be shown, which could lead 

to a flawed model (Alexandridis & Zapranis, 2006).
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From our data set of 31 years, we plot the average temperature graph as shown in Figure 

4.1. This graph shows the average temperature of Kasungu district from 1990-2020. It 

illustrates the seasonality in average daily temperature movements, indicating its 

similarity to a sine function in particular. The daily average temperature moves 

repeatedly and regularly through periods of high temperature (summer) and low 

temperature (winter). From our data set of 31 years, we plot the average temperature 

graph as shown in Figure 4.1. This graph shows the average temperature of Kasungu 

district from 1990-2020. It highlights the seasonality of daily average temperature 

changes, mainly how it resembles a sine function. The daily average temperature 

fluctuates often and predictably between hot summer and cold winter months. 

 

 

Figure 4.1 shows a stochastic model of average daily temperature in Kasungu from 1990 to 2020. 

 

 

The use of the Ornstein-Uhlenbeck procedure to mean-revert simulate temperature 

behaviour is justified in light of seasonal fluctuation and long-term trends in 

temperature. The daily average temperature variation will gradually return to the mean 

over time. The Anderson-Darling test was used to determine whether the varying 

temperatures for the Kasungu district were average. The hypothesis was rejected with 

an 𝐴 = 0.83279, 𝑃. 𝑣𝑎𝑙𝑢𝑒 = 0.03181. Although it is not normally distributed, we shall 

treat the daily variation in temperature as a Brownian motion. This is the case because 

when the histogram is used to check the temperature difference's normality, it finds that 

it is roughly average. This agrees with what (Wang et al., 2015) state that when data is 
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enormous, then it has to be approximately normal and Brownian motion should be 

considered. Figure 4.2 illustrates that the temperature differential is roughly average. 

 

 

 

Figure 4.2: Histogram of temperature differences of Kasungu district, Malawi. 

 

 

The stochastic differential equation characterizes the motions of the process if we 

indicate the average temperature at the date 𝑡 by ⁡𝑇𝑡 in equation (4) of which is 

 𝑑𝑇𝑡 = 𝑑𝑇𝑡
𝑚 + 𝑘(𝑇𝑡

𝑚 − 𝑇𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡  

where 𝑊𝑡 is the Brownian Motion, 𝜎𝑡 is the volatility square root time of the 

fluctuations, 𝑇𝑡
𝑚is the long-term mean, and 𝑘 is the mean reversion rate. To better 

understand the temperature dynamics, we computed the descriptive statistics of the 

data, as provided in Table 1.
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  Table 4.1: Descriptive statistics of temperature for Kasungu 

Maximum 34.7 

Minimum 9 

Mean 21.88196 

Median 22.1 

Mode 23.25 

Variance 8.504897 

Standard Deviation 2.916316 

Skewness -0.1304493 

Kurtosis 2.961842 

Coefficient of variation  13 % 

 

 

According to a descriptive evaluation of the information, the modal temperature is 

23.250C, while the average daily temperature is 21.88330C. The coefficient of variation 

(CV) is the difference between the standard deviation and the mean. The mean 

dispersion becomes more pronounced with an increase in the coefficient of variation. 

Usually, it is expressed as a percentage. The estimated average of 21.88330C (in our 

example) is shown to be representative of the data by the coefficient of variation. The 

CV of 13% demonstrates the data's minimal variability. As a result, a dataset's estimated 

average of the values is more reliable. 

 

 

The observed distribution exhibits a small amount of leftward asymmetry, with a 

skewness (asymmetry coefficient) smaller than 0 (-0.1304493). The data's median 

temperature is 22.1°C, whereas the mean is 21.88195°C, making the data's mode, 

23.25°C, more excellent. The mode must be more significant than the median and the 

arithmetic mean for left-skewed asymmetry, which is proven (Kovac, 2020). 

 

The size of the two tails' combined lengths is measured by kurtosis. It calculates how 

likely the tails are. The amount is typically contrasted with the normal distribution's 
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kurtosis, which is 3. Our data are typically distributed because the observed kurtosis is 

2.961842, which is roughly 3  

4.2 Trend and seasonality 

 

The temperature process has a seasonal trend, as seen in Figure 4:1. Consequently, we 

create a seasonal mean that also considers patterns as  

          𝑇𝑡
𝑚 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌),                       𝜔 =

2𝜋

365
 

where 𝑡 is a calendar year's range of days (1–365). 𝑇𝑡
𝑚⁡is the predicted temperature for 

a given day in 2021. 𝐴 + 𝐵𝑡 reflects the tendency brought on by urban effects and 

global warming since extreme temperatures do not necessarily occur at the beginning 

and middle of the year. C, which stands for amplitude, determines when we feel the 

highest or lowest temperature. 

Using trigonometric formulae, we have 

𝑇𝑡
𝑚 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌) 

= 𝐴 + 𝐵 + 𝐶1 sin(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) 

Where 

𝑐 = √𝑐1
2 + 𝑐2

2⁡ 

𝜌 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑐2
𝑐1
) − 𝜋 

To determine the parameters 𝐴 = {𝐴, 𝐵, 𝑐1, 𝑐2} that solve the optimization problem 

𝑚𝑖𝑛𝐴||𝑇𝑡
𝑚 − 𝑋(𝑡)||, we therefore fit 𝑇𝑡

𝑚 using least squares methods. 𝑋(𝑡) is the data 

vector. We present estimated values for parameters in Table 4:2, all of which suggest 

they are significant. When the estimated values are inserted into 𝑇𝑡
𝑚we get 

𝑇𝑡
𝑚 = 22.04 − 0.0000286𝑡 + 2.89929𝑠𝑖𝑛 (

2𝜋

365
𝑡 + 1.60807)                    (30) 
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where A is the coefficient, set to 22.04 °C and is computed as the average daily 

temperatures between 1.1.1990 and 31.12.2020. Coefficient B, which has a value of -

0.0000284t°C, represents the expected rise in the annual average temperature in 2021 

compared to the average of the average temperatures for the base period (1990-2020). 

Given that it assumes the highest average daily temperature in 2021 will be around 

24.93929 °C (22.04 °C + 2.89929 °C) and the lowest will be approximately 19.14071 

°C (22.04 °C - 2.89929 °C), the value of Factor C is 2.89929 °C, which is realistic and 

predicted. 

As a result, the average daily temperature, previously computed at 22.04 °C, can be 

anticipated at the end of March (2.85 months after the year's start), and all average daily 

values beginning on January 1 should be lower than 22.04 °C with an upward tendency. 

The sine function shift is 1.60807, or roughly three months of a year, in terms of the 

sine function, or 2.85 months. In March, the yearly average temperature for the months 

that are not susceptible to significant temperature swings changes. 

The predicted values for 2021 were derived using the O-U procedure and presented in 

Figure 3:9 by substituting the 365 calendar days for t. 

 

Table 4:2. Estimated parameter values for the seasonal mean 

Parameter  Estimated  Std Error t value Pr(>|t|) 

A 2.204e+01 3.600e-02 612.248 < 2e-16 *** 

B -2.864e-05 5.512e-06 -5.196 2.07e-07 

*** 

C1 -8.671e-01 2.546e-02 -34.058 < 2e-16 *** 

C2 2.986e+00 2.545e-02 117.331 < 2e-16 *** 
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Figure 4:3 shows the daily average temperature and predicted season means. 

 

Figure 4:3 depicts the yearly mean and the daily average temperature. The mean 

reasonably fits the data. 

 

4.3 Estimation of mean reverting speed 

 

According to Patricia et al. (2021) & Wang et al. (2015), derived the most 

straightforward Ornstein-Uhlenbeck process, often known as a mean-reverting process, 

is as follows. 

𝑑𝑇𝑡 = [𝛼(𝑇𝑡
𝑚 − 𝑇𝑡) +

𝑑𝑇𝑡
𝑚

𝑑𝑡
]⁡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡                                                        (31) 

Here, 𝑇𝑡
𝑚 is the normal level of 𝑇𝑡, to which 𝑇𝑡 tends to revert, and 𝛼 is the reversion 

speed. Remember that the difference between 𝑇𝑡 and 𝑇𝑡
𝑚 determines the anticipated 

change in 𝑇𝑡. If 𝑇𝑡is higher (less) than 𝑇𝑡
𝑚  is more likely to decrease (increase) over 

the following brief period. Therefore, despite satisfying the Markov characteristic, this 

process lacks independent increments. 

If the value of 𝑇𝑡 is currently 𝑇0 and 𝑇𝑡 is calculated using equation (18), then its 

anticipated value at any point in the future is given by  

       𝐸[𝑇𝑡] = 𝑇𝑡
𝑚 + (𝑇0 − 𝑇𝑡

𝑚)𝑒−𝛼𝑡                                                                          (32) 

Also, the variance of (𝑇𝑡 − 𝑇𝑡
𝑚) is 
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𝑉[𝑇𝑡 − 𝑇𝑡
𝑚] =

𝜎2

2𝛼
(1 − 𝑒−2𝛼𝑡)                                                                             (33)   

We return to the easy O-U (mean-reverting) approach of equation (32) for the derivation 

of equations 32 and 33. Set 𝑇𝑡
𝑚 to 0 to make the calculation more straightforward, which 

results in the equation: 𝑑𝑇𝑡 = −𝛼𝑇𝑡⁡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡                                     (34) 

We said that equations (32) and (33) provide the text's mean and variance of 𝑇𝑡. To 

support this assertion, we can apply the Kolmogorov forward equation.  

Write 𝑀(𝜃, 𝑡) = 𝐸[𝑒−𝜃𝑇]as the moment-generating function for 𝑇𝑡 

 

         = ∫ 𝜙(𝑇0, 𝑡0: 𝑇, 𝑡)𝑒
−𝜃𝑇𝑑𝑡

∞

−∞
                                 (35) 

Then,  

           
𝜕𝑀

𝜕𝑡
= ∫

𝜕𝜙

𝜕𝑡
𝑒−𝜃𝑇𝑑𝑇

∞

−∞
                                             (36) 

The Kolmogorov forward for this process is  

         
𝜕𝜙

𝜕𝑡
=

1

2
𝜎2

𝜕2𝜙

𝜕𝑇2
− 𝛼𝑇

𝜕𝜙

𝜕𝑡
+ 𝛼𝜙                                  (37) 

The following equation for 𝑀(𝜃, 𝑡) is obtained by substituting this for 
𝜕𝜙

𝜕𝑡
 in equation 

(17) and integrating by parts: 

           
1

2
𝜎2𝜃2 − 𝛼𝜃

𝜕𝑀

𝜕𝜃
=

𝜕𝑀

𝜕𝑡
                                               (38) 

Boundary conditions must be met in order to solve this partial differential: 

𝑀(0, 𝑡) = 1,−𝑀𝜃(0,0) = 𝑇0⁡𝑎𝑛𝑑 

⁡𝑉[𝑇0] = 𝑀𝜃0(0,0) − 𝑇0
2 = 0 

Hence, the equation has the following equation 

𝑀(0, 𝑡) = 𝑒
𝜎2𝜃2

4𝛼 [1 − 𝑇0𝜃𝑒
−𝛼𝑡 + (

1

2
𝑇0
2 −

𝜃2

4𝛼
) 𝜃2𝑒−2𝛼𝑡]             (39) 

Using the fact the 𝐸[𝑇𝑡] = −𝑀(0, 𝑡) and 𝐸[𝑇𝑡
2] = 𝑀00(0, 𝑡)verifies equation (32) and 

(33) ∎ 

The expected value of 𝑇𝑡 converges to 
𝜎2

2𝛼
, as seen from these formulae. Additionally, 

as 𝛼 → ∞,𝑉[𝑇𝑡] → 0, this denotes that 𝑇𝑡 can never stray from 𝑇𝑡
𝑚, not even 

momentarily. In the end, 𝑇𝑡 becomes a straightforward Brownian motion and 𝑉[𝑇𝑡] →

𝜎𝑡
2. The first-order autoregressive process in discrete time is represented by equation 

(32) in continuous time. Equation (32) is the limiting case for the following AR (1) 

process as ∆𝑡 → 0. 
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𝑇𝑡 − 𝑇𝑡−1 = 𝑇𝑡
𝑚(1 − 𝑒−2𝛼) + (𝑒−2𝛼 − 1)𝑇𝑡−1 + 𝜖𝑡                       (40) 

where 𝜖𝑡 has the mean of a normal distribution zero and a standard deviation of 𝜎𝑡and 

𝜎𝑡
2 =

𝜎2

2𝛼
(1 − 𝑒−2𝛼𝑡)                                                                           (41) 

Therefore, by doing the regression and utilizing discrete temporal data (the only data 

ever accessible), one might estimate the parameters of equation (34): 

           𝑇𝑡 − 𝑇𝑡−1 = 𝑎 + 𝑏𝑇𝑡−1 + 𝜖𝑡⁡                                                    (42) 

Afterwards, calculating 𝑇𝑡
𝑚 = −

𝑎

𝑏
, 

               𝛼 = −log⁡(1 + 𝑏)                                                               (43) 

And 

                𝜎 = 𝜎𝑡√
log⁡(1+𝑏)

(1+𝑏)2−1
                                                                 (44) 

where 𝜎𝑡 is the regression's standard error. 

To find this mean reversion in our case, we run the ACF of the decomposed data. The 

ACF of our data is our b. The same can also be found by running a regression. 𝑏 =

−0.2137. Substituting this into (43) gives us the mean reversion of 0.2404. Fitting in 

mean reversion and 𝜎𝑡 in (44) gives us 0.8943. 

Kasungu's average temperature data was decomposed under the additive model to find 

the mean reversion. Figure 4:4 shows the decomposed plot of the statistics on 

Kasungu's average temperature. Figure 4:5 shows the Auto Correlation Function 

(ACF) plot. 
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Figure 4:4: Decomposed plot of the Average Temperature of Kasungu 

 

 

Figure 4:5: shows the Auto Correlation Function (ACF) plot 

 

There are significant autocorrelation values for ACF for several lags, which may call 

for adopting more advanced autoregressive models. The ACF also reveals the presence 

of seasonality in both the residuals and time dependence in the variance of residuals. 
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To extract the 𝜎𝑡
2 from the residuals. We must first analyse and simulate the random 

noise process—but testing for stationarity Augmented Dickey-Fuller (ADF) test, the 

𝐷𝑖𝑐𝑘𝑒𝑦 − 𝐹𝑢𝑙𝑙𝑒𝑟 = −7.3612, 𝑃. 𝑣𝑎𝑙𝑢𝑒 = 0.01. Since the P-value is less than 0.05, we 

cannot rule out the possibility that the data are stationary and that mean reversion is 

constant. 

Calculating the volatility of the temperature process   

 

The residual graph in Figure 4:6 below shows that the residuals are normally 

distributed, as many points do not vary from the regular line. 

 

  

Figure 4:6, a residuals graph. 

 

 

According to the methods outlined in (Benth, & Šaltyt-Benth, 2011; Dzupire et al., 

2019; Wang et al., 2015). the volatility is extracted. After that, the residuals are split 

into 365 categories, each representing a day of the year for the last 31 years (1990-

2020). Then, we calculate the mean of the squared residual in each set of expected daily 

residuals: 

𝜎𝑡
2 = 𝐸[(𝜎𝑡𝜀𝑡)

2]                                                    (45) 

As seen in the figure below, these numbers are used as observable estimates of the daily 

variance based on years of observations for a specific day. 
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Figure 4:7, Empirical volatility 

As can be observed, the wet season has bigger temperature fluctuations than the dry 

season. In order to derive the volatility model, we fit the data using the volatility model 

(44) 

   𝜎𝑡
2 = −0.02603 − 0.17421 sin [

2𝜋𝑡

365
]                                        (45) 

Figure (3:7) compares the estimated model and the empirical volatility and 

demonstrates how closely the estimated model matches the empirical model. 

 

Comparing the actual average temperature to the outcomes of the stochastic models 

under ARIMA to determine how well the model performed. The calculated Root Mean 

Square Error (RMSE), which evaluates how well the temperature model performs, has 

a value of approximately 1.158505, and the Mean Performance Error (MPE), which 

compares the actual temperature to temperature models, was roughly -0.3110809. This 

means that the model is over-forecasted by around 0.311%. Hence, figure 4:8 below is 

the graph of the forecast temperature for backwards. This has been done on the 

decomposed temperature without seasonality and trend (random). Figure 4.9 shows the 

forward forecasted temperature from 2021 to 2024 of Kasungu district using our 

temperature model. These forecasted temperature figures tell that no matter the 
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situation is, this model can support the option provider in setting the derivative price 

for a specific time frame regardless of anything. 

 

Figure 4:8. Shows the backward forecasted temperature of Kasungu district. 

 

 

Figure 4:9. Shows the forward forecasted Temperature of the Kasungu district. 

 

The study results prove that the average temperature has increased since 1990. This is 

evidenced in Figure 4:5, which tells us a story of an increase in average temperature. 

The results show that there will be a slow but steady increase in temperature. This 
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scenario does not offer a positive outlook for agriculture production since they are 

vulnerable to increased temperature. In relation to (Quindala, 2021), this temperature 

rise will lead to low maize yields as it says 10C will lead to a 10% decrease in crop 

yields. As the case with this study where it looks into agriculture done during irrigation 

which is more vulnerable to high temperature since according to (Means, 2018) we will 

not experience raindrops to control air temperature. Hence, with this rising temperature 

that cannot be controlled, the idea of hedging crop yield against extreme temperatures 

during irrigation will help farmers have something at the end of the farming season. 

 

According to our model, if the parameters remain unchanged in the next 30 years or so, 

the results of this study provide an early view of possible temperature patterns. As 

stipulated earlier, temperatures of 380c and above and 100c and below can trigger maize 

sterility. These forecasts can particularly threaten agriculture. This tells us that 

agriculture done during irrigation is much more vulnerable. This can help the 

government and non-governmental organisations devise contingency measures. One of 

these measures is to consider taking temperature derivatives to hedge maize crop yields 

into agriculture policy into this 2063 agenda.  

 

This is why farmers should use weather derivatives to protect their yields from rising 

temperatures. This is especially true for Malawi as one of the developing nations, where 

a sizable section of the populace still depends on agriculture and where government 

insurance and other support forms still need improvement. Indeed, this study reveals 

what other research has revealed that, for instance, farmers in central and northwestern 

China are drawn to weather-indexed insurance (Sun & Kooten, 2015).  

 

4.5 Hedging maize crop yield 

Hedging is an advanced risk management strategy involving buying or selling an 

investment to help reduce the chance of loss of an existing position. When purchasing 

call options, farmers use temperature as the underlying asset. A call option gives its 

owner the right to pay a premium and purchase the underlying asset from the provider 

for the specified period at the specified price (Berislav & Matej, 2020). If the buyer 
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expects unfavourable weather that could increase the price of derivatives due to 

monetary gain generated by the set price the supplier has to offer the customer, they 

may decide to buy call options. 

 

The monetary value of each GDD and the weather derivative is calculated based on the 

index's value. The derivative buyer wagers that his company will experience an 

unfavourable change in air temperature throughout the duration of the contract. The 

provider will pay the buyer a set fee if his prediction comes true. 

 

Weather derivatives must be introduced as a contingency mechanism to assist farmers 

in hedging possible losses in maize yield due to climate change, particularly 

temperature fluctuation. The paper offers temperature weather derivatives with 

temperature as their underlying index. Temperature is one of the most critical elements 

affecting the variability of maize output. 

 

Now, taking from Proposition 3.3: Therefore, the cost of the GDD call option at time 

𝑡 < 𝑡1⁡ is as follows: 

𝑐(𝑡) = 𝑒−𝑟(𝑡𝑛−𝑡)𝐸𝑄[𝑚𝑎𝑥⁡(𝐻𝑛 − 𝑘, 0)|⁡ℱ𝑡]                                                

= 𝑒−𝑟(𝑡𝑛−𝑡) ∫ (𝑥 − 𝑘)
∞

𝑘
𝑓𝐻𝑛(𝑥)𝑑𝑥                                                                

= 𝑒−𝑟(𝑡𝑛−𝑡){(𝜇𝑛 − 𝑘)𝛷 (−
𝑘−𝜇𝑛

𝜎𝑛
) +

𝜎𝑛

√(2𝜋)
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2
} “                                

 𝐶(𝑡) is the price or premium that the hedger (the buyer of a call option) needs to pay 

for the contract, r is a risk-free periodic market interest rate, t is the date the contract is 

issued (purchased), and 𝑡ℎ𝑒𝑛 is the date the contract is claimed or the expiration date. 

𝐸𝑄 is the expected payoff based on the predicted historical mean temperature value. 

The seller of the option would expect a reward for taking a risk loading, which is often 

between 20% and 30% of the payoff payoff (Kooten, 2015). In the current application, 

we set the risk loading at 20% of the expected payoff payoff of the contract. 
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From the forecasted temperature of 2021, the GDD has been calculated from August 1 

to December 31 since this is the time when maize crops are mainly irrigated. It has been 

observed that the temperatures are too low in early August. This gives the farmer insight 

into how to hedge their crop yield against low temperatures. The temperatures are also 

high in November and December; this also gives a farmer insight into how to hedge his 

or her crop yield against high temperatures.  

 

To price the financial weather derivatives, we assume a tick size D = $1 and risk-free 

interest rate r = 0.08, Δt =
3

4
𝑦𝑒𝑎𝑟(August 1 to December 31, 2021), making 153 days. 

August to October is hot-dry season and Nov/Dec to March/April is hot wet dry season 

in Malawi. But this study assume the stated date by considering the effects of climate 

change where most part of Malawi are still dry up to mid-December.  Our risk loading 

𝑏 = 20%,⁡⁡⁡𝜇 = 12. 680C. The forecasted GDDs and standard deviation for 2021 are 

1937.430C and 1.830C, respectively, and are used to calculate the actual premiums for 

the contracts. 

 

Table 3: Specification of GDD options for the year 2021 

Items call options 

Weather index GDD(x) 

Strike Level 12.68-2*1.83 

Barrier level  B = 180 c 

Tick Size (D) $1 

Premium  $3.50 

PayoffPayoff Max(GDD-K, 0) 

Issue Date August 1 2021 

Maturity date December 31 2022 
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The strike value is 𝜇 − 2𝜎⁡for above 2 standard deviations of the forecasted GDDs; this 

2 =
𝑥−𝜇

𝜎
, then 𝜙(2) = 0.9772⁡𝑎𝑛𝑑⁡Φ(2) = 0.9772. The premium is calculated from 

equation 33. The premium is $3.50 because we assume the GDD is above the barrier 

level with one difference. This is where the barrier option is equal to the vanilla option. 

In this case, the barrier option does not knock out. Hence, it gives the holder the right 

to buy the underlying asset since it does not exceed a predefined level over the option's 

lifetime.  

 

The premium has been calculated to be $3.50 because we assume that the GDD is above 

the barrier level with one difference. This is where the barrier option is equal to the 

vanilla option. In this case, the barrier option does not knock out. Hence, it gives the 

holder the right to buy the underlying asset since it does not exceed a predefined level 

over the option's lifetime. Now, if the GDD is within the barrier level, the farmer will 

not have to pay the premium of $3.50 because the option is invalid. On the same note, 

the farmer will have to exercise his right by paying the premium of this calculated 

premium when the GDD exceeds the barrier level. In return, the farmer gets paid off, 

which is the difference between GDD and barrier. This will be taken daily within the 

contract. 

 

In summary, this chapter shows that the corrected data fit well into the modelled 

temperature model. Using the model, we can predict future temperature indices. Taking 

the future temperature index (GDD) into the pricing model can also hedge maize crop 

yields.  
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CHAPTER FIVE 

 CONCLUSION AND RECOMMENDATION 

 

This chapter examines the conclusion of this study in section 5.1, the recommendation 

in section 5.2, and the further studies in section 5.3. 

 

5.1 Conclusion 

In Malawi, most people, especially small-holder farmers, rely on the agricultural sector 

as their primary source of income. A trustworthy and effective insurance product 

(weather derivative) is required for small-holder farmers and stakeholders because this 

industry is susceptible to climatic shocks. Due to high basis risks in the product's pricing 

and design, most farmers would prefer to purchase this product. Because weather 

indices are not traded assets, the market for weather derivatives is a classic incomplete 

market, making it impossible to price weather derivatives using traditional no-arbitrage 

techniques like the Black-Scholes formula. 

 

Given that maize is a staple crop for farmers in Malawi, it was decided to utilize maize 

yield as a proxy for crop yields. Each weather variable was given a significance score 

based on the feature's importance before being included in the ensemble learning 

model. The study demonstrates that the average temperature was the most critical 

weather variable for developing weather derivatives. This reduced the risk associated 

with the product design foundation.
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5.2 Recommendation 

 

With the agenda of Malawi 2063, this study is good enough to be incorporated into 

agriculture policy as it presents a way to protect farmers from financial consequences 

due to extreme temperatures. This will bring an increase in the income of individual 

farmers, thereby mitigating poverty. We assume there is no correlation between the 

tradable asset and weather indexes, considering that we are interested in how a farmer 

can hedge temperature-related weather risks. The pricing model developed can be used 

in the agriculture industry where a farmer is interested in hedging weather risks due to 

temperature. It can also price weather derivatives in other weather-related industries 

affected by temperature. The results of this study can help insurance providers and the 

government to design products that can help the farmers. Projecting future temperatures 

and growing degree days is uncertain, so farmers wish to hedge against weather risk. 

However, markets must provide farmers with attractive, practical hedges representing 

producers' risks. 

 

With efficient and reliable pricing models, basis risks would decrease. As a result, the 

farmer would be more willing to pay for the contracts and trading activities in the 

market for weather derivatives. 

5.3 Further studies 

Further research should be conducted on barrier option pricing of weather derivatives 

under the basket. This pricing should consider both the lower and upper barrier of the 

weather index, which may lead to lower yields. 
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ABSTRACT 

Agriculture production yield varies with weather changes. This causes farmers to incur 

losses. For instance, extreme temperature leads to low maize yield. This study describes 

incomplete temperature weather derivatives in agriculture markets and applies risk 

management hedging techniques. It focuses on hedging crop yield against extreme 

temperatures during irrigation farming, which is done without a greenhouse. This study 

primarily aims to hedge maize crop yields using temperature derivatives. This is 

achieved by (i) developing a daily average temperature stochastical model. (ii) Deriving 

statistical properties of the model based on the historical data of 31 years of our sample 

space (1990 – 2020 Kasungu District Temperature data). (iii) Pricing temperature 

derivatives to hedge maize crop yield. To achieve this, a stochastically Ornstein-

Uhlenbeck process with the time-varying speed of reversion, seasonal mean, and local 

volatility that depends on the local average temperature was proposed. Based on the 

average temperature model, down and output, option pricing models for average 

temperature and growing degree day are presented. The study's findings suggest that 

the temperature will rise gradually but steadily. This scenario does not offer a positive 

outlook for agriculture production since a temperature rise can damage it. The premium 

for weather derivative options has been calculated as $3.50 per GDD index contract. 

Farmers and agricultural stakeholders can hedge their crops against extreme 

temperature-related weather risks with these models. In line with Malawi's 2063 

Millennium Development Goals (MDGs), this study acts as an eye opener for the 

government to put a policy on whether derivatives should be practised in our country 

hence, increase cash holding by improving the situation of the farmer and country. 
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Key words: Incomplete market, Weather derivatives, Growing Degree Day, 

temperature barrier option pricing. 

1. INTRODUCTION 

Agriculture is the backbone of the Malawian economy (Ministry of Agriculture, 2016) 

It is an important sector that generates income for the majority of the population, helps 

Malawi earn money through exports, and supplies the majority of manufacturing 

industries. A large percentage of smallholder farmers in Malawi primarily get their 

income from the agriculture and agribusiness sectors, which make for an important 

portion of the country's key economic activity. Most of these farmers grow maize, soya 

beans, tobacco, rice, and ground nuts. Maize is the main crop and it is the staple food 

in Malawi. Smallholder farmers grow maize for food and they sell the excess. Low 

yields of maize are a yardstick of hunger in the country. According to reports, it 

contributes to more than 25% of Africa's GDP and roughly 70% of the labour force. 

(Samuel Asante Gyamerah, 2019).  According to Ministry of Agriculture, (2016), It is 

reported that agriculture sector support about 85% of the population in terms of 

employment. It accounts for more than one quarter of the Malawi gross domestic 

product and account for 90% of the foreign exchange. As a result, the development of 

the economies in Africa, of which Malawi is a member state, has agriculture as one of 

its most significant and largest fields. 

 

Agriculture production in Malawi is heavily dependent by weather elements like 

rainfall, temperature, wind etc. any variations in these elements greatly affects harvest.  

For instance, the production of maize is greatly influenced by the weather. The stages 

of plant growth affect how each crop species responds to temperature variations. The 

limits of visible growth are determined by a specified range of maximum and minimum 

temperatures for each species. Extreme temperature makes it difficult for maize to 

develop. Extremely high temperatures during the reproductive stage will have an 

impact on the viability of the pollen, the process of fertilization and development of 

grains or fruits. (Hatfield, J. L., & Prueger, 2011, 2015). The yield potential of initial 

grains or fruits will be reduced by repeated exposure to extremely hot or cold conditions 

during pollination. However, it's possible that the most detrimental effects of acute 

exposure to strong events will occur during the reproductive stages. Because this 

measure is the one that both producers and consumers are most concerned about, the 
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effects of climate change are most noticeable in maize crop productivity. Maize grows 

well under temperatures of 210c to 270c. According to Hatfield, J. L., & Prueger, (2015) 

the base temperature below which crop growth cease is 100c and above 380 C.  

This underlines the significance of contingency planning, which includes setting up 

backup funds, strengthening currency reserves to protect against external shocks, and 

validating the usage of weather insurance (Dzupire et al., 2019). Similar to how 

insurance against poor crop yields can be used at the family level, weather derivatives 

offered to small farmers may do the same. 

 

According to Islam and Chakraborti, (2015), derivatives are described as “financial 

instruments that are linked to a specific financial instrument or indicator or commodity 

and through which specific risks can be traded in financial markets in their own right. 

The value of a financial derivative derived from the price of an underlying item, such 

as an asset or index. Unlike debt securities, no principal is advanced to be repaid and 

no investment income accrues.” The underlying asset may take on a variety of shapes, 

including: goods such as grain, coffee, and orange juice; precious metals such as gold 

and silver; currency exchange rates; and bonds of many kinds, such as medium- to long-

term transferable debt securities issued by governments, businesses, etc. Finally, 

securities of corporations marketed on reputable transactions of stocks and Stock Index, 

including shares and share warrants. 

 

Financial derivatives are essential for controlling the financial risk that corporations 

face. All throughout the world, they have been extremely successful, widely used, and 

valuable advances in the capital markets. Financial derivative markets have recently 

been discovered to be operating actively in both developed and developing nations. The 

principal application is hedging, often known as a function of price insurance, risk 

shifting, or risk transference. They give traders a means through which to manage their 

risks or shield themselves from unfavourable changes in the value of the underlying 

assets they work in. For instance, a farmer may take the market's risk and sell a futures 

contract to offset the risk. 

Due to the crops' frequent exposure to unfavourable weather, crop production is a 

difficult endeavour which temperature is amongst of it. Crop production rate is 

significantly influenced by weather and climate conditions. However, restrictions have 
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no place when agricultural production plays a significant role in ensuring global food 

security. As a result, farming in a controlled environment is now practiced as a result 

of the quest for alternatives (Ines, 2017) . One of the fundamental types of farming in a 

controlled environment is greenhouse farming. Effective management is made possible 

by greenhouse farming, which also lowers hazards brought on by adverse weather 

conditions. (Ines, 2017). It manages heating to suit the crops. Since greenhouse are 

costly, cannot be managed by most farmers. 

 

Although the use of financial weather derivatives in agriculture has not been as 

widespread as it is in the energy industry, studies have examined the use of historical 

data to create heat or rainfall index-based weather derivatives (Sun, W., & Lou, 2013). 

For agriculture production the relationship is not always as straight forward since 

differences in products, crop growth phases and soil textures just to mention a few have 

different responses to the temperatures. Baojing & Kooten,( 2015) concentrated on 

pricing using financial derivatives to protect the output of corn crops by contrasting 

several approaches to calculate the price of weather derivatives using Growing Degree 

Day (GDD). Patricia P. et al., (2021) modelled the daily mean temperature and created 

the Growing Degree Day (GDD) European put option for rice in Laguna.  

 

These studies did not put into consideration that such agriculture can also be done 

through irrigation where temperatures are not controlled, as compared to agriculture 

done in the rainy season where the rain drops control the air temperature (Means, 2018). 

Hence this study focus hedging crop yield against extreme temperatures during 

irrigation farming which is being done without green house as it is prone to extreme 

temperature that affects their crop yields. 

Four sections make up the structure of this study. The temperature-based weather 

derivatives are covered in section 2. Hedging maize crop production is covered in 

Section 4 after Section 3's talks of simulation and parameter estimation. The research 

was finally concluded in Section 5. 

 

2. TEMPERATURE-BASED WEATHER DERIVATIVES 
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2.1 Daily average temperature data 

The data in this study is from Kasungu district. It has been chosen because is the top-

list district that grows maize both during rainy season and dry season under irrigation 

which feeds a good per cent of Malawians  (Phiri, 2016).This means that low maize 

yield in this district will lead to hunger and hence affect the economy of the country.   

 

From 1 January 1990 through 31 December 2020, historical data on daily minimum 

and maximum temperatures were gathered from the Department of Climate Change and 

Meteorological Service's headquarters. This sample size of 31 years’ period will ensure 

that we are capturing the overall long term trend to have a real picture to forecast future 

temperature. The missing data has been treated by either finding the average 

temperature adjacent to the missing data or last observation carried forward and next 

observation carried backwards. All the leap years have been dropped. 

 

2.2 Temperature indices 

 

The temperature information collected from a given station in a given area is the 

foundation for temperature indices. If 𝑇𝑖
𝑚𝑎𝑥 and 𝑇𝑖

𝑚𝑖𝑛 are the highest and lowest 

temperatures recorded at a meteorological station on day 𝑖, respectively, the Daily 

Average Temperature (DAT) on that day is calculated as  

𝑇𝑖 =
(𝑇𝑖

𝑚𝑎𝑥+𝑇𝑖
𝑚𝑖𝑛)

2
                                                                                            (1) 

a base temperature, as well as the daily average temperature (DAT) are two variables 

that determine how many degrees a day there are. The amount of heat that must build 

up each day for a crop to grow, sprout new leaves, reach the reproductive stage, and 

eventually mature is known as the growing degree day (Patricia P. et al, 2021). We 

consider maize crop to be produced under irrigation for the period of August to 

December. Maize requires at least 100C. GDD is defined as: 

                   𝐺𝐷𝐷𝑖 = max⁡{𝑇𝑖 − 10, 0}                                                                    (2)                                                               

a full 153-day period's GDD is defined as,  

              𝐺𝐷𝐷 = ∑ 𝐺𝐷𝐷𝑖
153
𝑖=1                                                                                     (3) 

 

2.3 Daily average temperature stochastic dynamics 
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Putting together seasonality, long-term trends, unpredictability, and mean reversion, 

temperature has been modelled by a stochastic process  

𝑑𝑇𝑡 = 𝑑𝑇𝑡
𝑚 + 𝑘(𝑇𝑡

𝑚 − 𝑇𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡                                                               (4) 

Proposition 2.2.1: If the Daily Average Temperature (DAT) follows an Ornstein-

Uhlenbeck process with a mean reversion that is mean-reverting and whose speed 

varies over time as well as a seasonal mean and variance: 

 𝑑𝑇𝑡 = 𝑑𝑇𝑡
𝑚 + 𝑘(𝑇𝑡

𝑚 − 𝑇𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡  

The Ito formula yields the following implicit solution:  

𝑇𝑡 = 𝑇𝑡
𝑚 + 𝑒∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢(𝑇𝑠

𝑚 − 𝑇𝑠) + 𝑒∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢 +∫ 𝜎𝑠

𝑡

𝑠

𝑒−∫ 𝑘(𝑢)
𝑡
𝑠 𝑑𝑢𝑑𝑊𝑡 

which is the same is: 

𝑇𝑡 = [𝑇𝑠
𝑚 − 𝑇𝑠]𝑒

−𝑘(𝑡−𝑠) + 𝑇𝑡
𝑚 + ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟

𝑡

𝑠
                            (5) 

In equation (5) 𝑊𝑟 is the Brownian motion, 𝜎𝑡 is the deterministic function of time  𝑡, 

the random variable ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟
𝑡

𝑠
 is normally distributed with mean zero and a 

variance ∫ 𝑒−2𝑘(𝑡−𝑟)𝜎𝑟
2𝑑𝑊𝑟

𝑡

𝑠
.  

The Brownian motion's characteristic of independent increments forms the foundation 

of the proof. The filtration ℱ𝑠 leads us to the conclusion that 𝑇𝑡 is normally distributed, 

with mean and variance given by: 

            𝐸𝑝[𝑇𝑡|ℱ𝑠] = [𝑇𝑠 − 𝑇𝑡
𝑚]𝑒−𝑘(𝑡−𝑠) + 𝑇𝑡

𝑚                                                         (6) 

𝑉𝑡
2 = 𝑣𝑎𝑟[𝑇𝑡|ℱ𝑠] = ∫ 𝑒−2𝑘(𝑡−𝑟)𝜎𝑟

2𝑑𝑟
𝑡

𝑠
.                                                           (7) 

We now describe explicitly the expression of the equation, (3), when 𝑠 = 𝑡 − 1. I get  

𝑇𝑡 = [𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ]𝑒−𝑘(𝑡−𝑠) + 𝑇𝑡

𝑚 + ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟
𝑡

𝑡−1
.                             (8) 

The variable ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟
𝑡

𝑡−1
 is a random variable having a Gaussian distribution, 

mean zero, and variance: 
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𝑉𝑡
2 = 𝑣𝑎𝑟[𝑇𝑡|ℱ𝑡−1] = ∫ 𝑒−2𝑘(𝑡−𝑟)𝜎𝑟

2𝑑𝑟
𝑡

𝑡−1
.                                                    (9) 

Therefore, we can write (8) as  

𝑇𝑡 = [𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ]𝑒−𝑘 + 𝑇𝑡

𝑚 + 𝜎𝑡𝜀𝑡.                                                            (10) 

This means that (6) has a simple discrete time representation with an autoregressive 

structure of order 1 (AR (1)). This result has very important implications for the 

estimate of the unknown. This indicates that (6) has a straightforward discrete time 

representation with an order 1 autoregressive structure (AR (1)). The estimation of the 

unknown parameter in the equation above is significantly impacted by this outcome. 

Since the variable in the case of 𝑇𝑡is observed at discrete points in time rather than 

constantly, estimate in continuous time is generally quite challenging. The likelihood 

function can only be analytically expressed for a small subset of processes. The 

Ornstein-Uhlenbeck process is one of them and is illustrated in (10). These models can 

be calculated with precision using techniques like maximum likelihood. Although they 

use a two-step estimation method, Atalon, et al., (2002) never assume that a generalized 

Ornstein-Uhlenbeck process permits flawless discretization. The model of average 

temperature 𝑇𝑡 in day 𝑡 is given as follows as a result of applying the parameterized 

maximum likelihood method for equation (10) 

𝑇𝑡 = 𝛼[𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ] + 𝑇𝑡

𝑚 + 𝜎𝑡𝜀𝑡 ,                                                                 (11) 

with 𝛼 = 𝑒−𝑘⁡𝑎𝑛𝑑⁡where, 𝜀𝑡∼ N(0, 1), the deterministic portion of the temperature is 

𝑇𝑡
𝑚, the volatility is 𝜎𝑡, and 𝛼 is the mean reversion speed. When coming up with this 

deterministic part we take into account the combinational of the seasonality, trend and 

the expression for the sine function shift. Hence it is given by the expression: 

𝑇𝑡
𝑚 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌)                                                                      (12) 

𝜔 =
2𝜋

365
 

where 𝑇𝑡
𝑚⁡shows the predicted temperature for a day with t in 2021, where the number 

of days in a year is given by⁡𝑡 (1–365). Variable A represents the average daily air 

temperature for the period from 1.1.1990 to 31.12.2020, variable B describes the impact 

of an annual global warming trend, and variable C establishes the seasonality of 
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temperatures throughout the year, or how much the winter and summer temperatures 

deviate from the annual temperature mean. Since the highest and lowest temperatures 

neither happen at the beginning nor the middle of the year. This phenomenon is known 

as phase shift denoted by 𝜌. 

Using trigonometric formula, we have 

𝑇𝑡
𝑚 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌) 

= 𝐴 + 𝐵 + 𝐶1 sin(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) 

Where 

 

𝑐 = √𝑐1
2 + 𝑐2

2⁡ 

𝜌 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑐2
𝑐1
) − 𝜋 

Similarly, based on practical findings, we define the cyclic nature of the function  𝛿2 

(Benth and Benth (2005), Zapranis and Alexandridis (2014)). 

𝛿2 = 𝑐 + ∑ 𝑐𝑖sin⁡[
2𝜋𝑖

365

𝐼
𝑖=1 ] + ∑ 𝑐𝑖cos⁡[

2𝜋𝑖

365

𝐽
𝑗=1 ] ………………………. (13) 

Based on past temperature records, variables A, B, and C will be determined, along 

with the shift 𝜌. In equation (12) (Atalon, et al., 2002) concentrated on the seasonality, 

trend and the sine function's shift expression. Alaton et al (2002), modelled temperature 

model which is of a long-term nature and may not be equally applicable in short term. 

They made the assumption known as homoscedasticity that variance would be constant 

over time. However, according to (Olivier Niyitegeka and D.D. Tewari, 2013), 

empirical evidence has disputed this supposition. When calm and volatile periods are 

observed in time series, volatility clustering is known to occur, making the variance at 

least appear predictable. Since temperature data is time series data may display 

significant auto-correlation. Hence, we propose to extend this Alaton et al (2002) by 

relaxing the assumption concerning 𝜀𝑡 to (12) and allowing 𝜀𝑡 to be autocorrelated. So 

it will be 
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𝑇𝑡
𝑚 = 𝐴 + 𝐵 + 𝐶1 sin(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) + 𝜀𝑡, 𝜀𝑡|𝐹𝑡−1~𝑁(0, 𝜎𝑡

2)                     (14) 

 

Assume 𝜀𝑡 follows the GARCH model (Generalized Autoregressive Conditional 

Heteroskedastic). According to Olivier Niyitegeka and D.D. Tewari (2013), GARCH 

forecasts future variability and addresses the issue regarding heteroskedasticity, or the 

time series' non-linear variability. The conditional variance can depend on prior own 

lags in the GARCH model, which uses the maximum likelihood method. The following 

is how the conditional variance equation is written. 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛽𝜎𝑡−1

2𝑝
𝑗=1 + ∑ 𝛼1𝜀𝑡−1

2𝑞
𝑖=1  ……………………………………………… 

(15) 

This replaces equation (13) where 𝛼0 has been substituted by 𝑐. 𝜎𝑡
2 is the volatility at 

time⁡𝑡. 𝛼1 has also been substituted by 𝑐𝑖 sin(𝑤𝑡) and  𝛽 has also been substituted by 

𝑐𝑖 cos(𝑤𝑡).⁡⁡𝜀𝑡−1⁡
2  is the previous period’s squared error term. 𝜎𝑡−1

2 , is the previous 

period’s volatility. 

Proposition 3.2. If 𝑇𝑡
𝑚 = 𝐸[𝑇𝑡], the process 

𝑑𝑇𝑖 = [𝛼(𝑇𝑡
𝑚 − 𝑇𝑡) +

𝑑𝑇𝑡
𝑚

𝑑𝑡
]⁡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡   revert to 𝑇𝑡

𝑚. For the proof refer to appendix. 

 

2.4 Pricing weather derivatives in an incomplete market 

 

The weather derivatives market is an example of an incomplete market, due to the fact 

that the fundamental variable temperature cannot be traded. In order to establish distinct 

pricing for such contracts, a risk's market value is added. The cost of risk is assumed to 

be constant for to maintain simplicity. Furthermore, the tick price is determined at $1 

per degree day and a It is assumed that the risk-free interest rate, 𝑟, remains constant. 

Typically, a risk-neutral valuation approach is used to price financial derivatives. 

According to the financial theory, a contingent claim's cost F, which is based on 

stochastic variables 𝐼, can be determined as follows (Xu, et al., 2007): 

𝐹 = 𝐸𝑄(𝐷,𝑊𝑇(𝐼))                                                                                                           (16) 

𝐼 can be an asset that is traded, like a stock, or untraded, like a weather index. At expiry 

time T, W represents the payoff of the derivative, and D represents a discount factor 
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𝑒−𝑟𝑇 with free rate. The subscript Q indicates that the expectation of the derivative pay-

off is to be calculated replacing a real-world probability with risk-neutral probabilities 

measurements, and E denotes an expectation, conditional on the information now 

available (Dzupire, et al., 2019) 

Equation (18) can be written as  

𝐹 = 𝑒−𝑟𝑇𝐸𝑃(
𝑑𝑄

𝑑𝑃
 𝑊𝑇(𝐼))                                                                                                     (17) 

  
𝑑𝑄

𝑑𝑃
 shows the Radon-Nikodym derivative of Q with respect to P.  

With the change of neutral measure, the stochastic process of 𝐼 becomes a martingale. 

If the stock moves with a geometric Brownian motion, reducing the drift to a risk-free 

rate can lead to a change in measure. 

But if indexes cannot be traded, the market is insufficient since a self-financing 

portfolio cannot reproduce the derivative. As a result, it is impossible to use no-

arbitrage pricing methods for weather derivatives because we are unable to create a 

portfolio free of risk that combines weather index and derivative (Xu et al.,2007). 

Additionally, the no-arbitrage criterion does not produce a distinctive pace because 

there are numerous martingale measures, therefore only contingent claims secured by 

bonds may be achieved (Dzupire et al., 2019). Formally we have the range  

[Inf
𝑄
𝑒−𝑟𝑇 𝐸𝑃(

𝑑𝑄

𝑑𝑃
,⁡𝑊𝑇(𝐼))⁡, Sup

𝑄
𝑒−𝑟𝑇 𝐸𝑃(

𝑑𝑄

𝑑𝑃
,⁡𝑊𝑇(𝐼))]                                                            (18) 

The interval in equation (14) is exceedingly big and therefore useless, where Q indicates 

the set of all equivalent martingale measures (Xu et al., 2007). The investor seeks to 

maximize the anticipated utility of the final wealth and minimize risks associated with 

the uncertain reward in an incomplete market by engaging in dynamic trading. Finding 

a method that maximizes the expected utility of terminal wealth under the physical 

measure while minimizing risks as measured by a risk measure is the objective.  

 

2.5 Temperature barrier option pricing 

 

A barrier option operates similarly to a standard option up until the time when the price 

of the underlying asset, X, crosses a predetermined barrier, B (Primajati G., 2020). The 
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feature of the selection is either a knock-in or knock-out. If an option is knocked in, it 

has no value unless the asset price passes the threshold. When an option is knocked out, 

it loses all of its value once the asset's price crosses the threshold. The barrier must be 

crossed in the direction indicated by the arrows going up and down. In addition to X 

and B, the strike price K, interest rate r, time to maturity T, dividend rate q, and volatility 

σ are the input arguments utilized to determine the value of barrier options. 

Barrier options are one of the most frequently traded derivatives on the financial 

markets, claim Wang, B. & Wang, L. (2011). They stand out from standard solutions 

thanks to unique qualities. The fact that barrier options are typically less expensive than 

normal options is one reason why an investor prefers them to plain vanilla options. This 

is so that the option holder can collect the payoff, the asset price must pass a particular 

threshold first. The third factor is that barrier options might better fit risk hedging 

requirements than conventional options. 

Farmers may buy a call option if it is anticipated to be higher. The payoff serves for the 

call contracts are provided by Baosung & Kooten, (2015) from the perspective of the 

purchasers. 

                        𝑃(𝑥)𝑐𝑎𝑙𝑙 = {
0,   𝑥 < 𝑘

 𝐷(𝑥 − 𝑘), 𝑥 ≥ 𝑘
                                             (19) 

𝑃(𝑥)denotes the option payoff, D the tick size (the amount of money for each weather 

index unit) and 𝑘 for the strike (trigger)value. Equation (19) turn also to be the payment 

of the barrier down and out call option for the barrier temperature option, where the k 

is now the barrier level. 

For barrier it is  

𝑃(𝑥)𝑐𝑎𝑙𝑙 = {
0,   𝑥 < 𝑘⁡𝑎𝑛𝑑⁡𝑥 < 𝐵

 𝐷(𝑥 − 𝑘), 𝑥 ≥ 𝑘⁡𝑎𝑛𝑑⁡𝑥 > 𝐵, 0 ≤ 𝑡 ≤ 𝑇
                                              (20) 

Where B is the barrier level and x is the weather index (GDD). 

The GDD option is dependent on the sum of the GDD across the growth season, where 

each temperature process follows the Gaussian process, which is represented by 

𝑇𝑡~𝑁(𝜇𝑡, 𝑣𝑡). Once we get both the conditional mean and variance of the GDD, we can 

proceed. The conditional mean and variance of 𝐺𝐷𝐷𝑛 for time  𝑡 < 𝑡1 can be calculated 

as follows: 
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𝐺𝐷𝐷𝑛~(𝑁(𝜇𝑢, 𝜎𝑛
2) 

Where, 

        𝜇𝑢 = 𝐸ℚ[𝐺𝐷𝐷𝑛|ℱ𝑠] = ∑ 𝐸ℚ[𝑇𝑡𝑖|ℱ𝑡] − 𝑘,𝑛
𝑖=1                                                 (21) 

⁡𝜎𝑛
2 ≡ 𝑣𝑎𝑟ℚ[𝐺𝐷𝐷𝑛|ℱ𝑡] = ∑ 𝑣𝑎𝑟ℚ[𝑇𝑡|ℱ𝑡] + 2∑∑ 𝑐𝑜𝑣ℚ[𝑇𝑡𝑖, 𝑇𝑡𝑗]|ℱ𝑡]𝑖<𝑗 ⁡⁡𝑛

𝑖=1    

(22) 

The anticipated return is the following, assuming a normal distribution for the weather 

indicator used in a financial instrument: 

           𝐸𝑝 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑝(𝑥)𝑑𝑥,                                                       (23) 

Where 𝑝(𝑥), is the payment associated with the financial instrument for the potential 

outcome. 𝑥 is the weather index. This 𝑥 at some point will reach the barrier level. The 

probability density function (PDF) of the weather index is denoted by⁡𝑓(𝑥). When the 

weather index is transformed into a regular normal distribution, let 𝑧 =
𝑥−𝜇

𝜎
, and the 

expected pay-out function is as follows: 

          𝐸𝑝 = ∫ 𝜙(𝑧)𝑝(𝑧)𝑑𝑧 =
1

𝜎

𝑏

𝑎
∫ 𝜙(𝑧)𝑝(𝑥)𝑑𝑥
𝑏

𝑎
                                          (24) 

From equation (24), 𝜙(𝑧) signifies the PDF of the typical normal distribution and 𝜎 is 

the standard deviation of the weather index. 

Inserting the payoff function for the call contract in the corresponding uncapped call 

options with closed-form functions are as follows when the expected pay-out function 

is entered: 

𝐸𝑝,𝐶𝐴𝐿𝐿 =
1

𝜎
∫ 𝐷(𝑥 − 𝑘)𝜙 (

𝑥−𝜇

𝜎
)𝑑𝑥 = 𝐷𝜎𝜙 (

𝑘−𝜇

𝜎
) + 𝐷(𝜇 − 𝑘) [1 − Φ(

𝑘−𝜇

𝜎
)] ,

∞

𝑘
         

(25) 

Multiplying the above by the difference of 𝑥⁡𝑎𝑛𝑑⁡𝐵⁡(𝑥 − 𝐵) gives us the call pay-off 

of the barrier call option to be 

= (𝑥 − 𝐵) [𝐷𝜎𝜙 (
𝑘−𝜇

𝜎
) + 𝐷(𝜇 − 𝑘) [1 − Φ(

𝑘−𝜇

𝜎
)]]                                          (26) 

Proposition 3.3: Therefore, the cost of the GDD call option at time 𝑡 < 𝑡1⁡ is as follows: 

𝑐(𝑡) = 𝑒−𝑟(𝑡𝑛−𝑡)𝐸𝑄[𝑚𝑎𝑥⁡(𝐻𝑛 − 𝑘, 0)|⁡ℱ𝑡]                                                

= 𝑒−𝑟(𝑡𝑛−𝑡) ∫ (𝑥 − 𝑘)
∞

𝑘1
𝑓𝐻𝑛(𝑥)𝑑𝑥                                                                
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= 𝑒−𝑟(𝑡𝑛−𝑡){(𝜇𝑛 − 𝑘)𝛷 (−
𝑘−𝜇𝑛

𝜎𝑛
) +

𝜎𝑛

√(2𝜋)
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2
}                                    (27) 

Where 𝑡𝑛 is time to maturity. the normal distribution's probability density function is 

𝑓𝐻𝑛 , and Φ represents the cumulative distribution function for the common normal 

distribution. 

Proposition 3.4 The price of the down and out barrier call option as  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝑒−𝑟(𝑡𝑛−𝑡) {(𝜇𝑛 − 𝑘)𝛷 (−
𝑘−𝜇𝑛

𝜎𝑛
) +

𝜎𝑛

√2𝜋
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2
} (𝑥 − 𝐵)                           (28) 

 

3. PARAMETER ESTIMATIONS 

 

3.1 DESCRIPTIVE STATISTICS 

This study looks at the daily average temperature data that was recorded in degrees 

Celsius in Malawi's Kasungu area. The data spans the years 1990 to 2020 and 11315 

data series are included. In order to preserve consistency over time, the temperature 

readings on February 29 of every leap year have been dropped. In Malawi's center area, 

Kasungu district is located. 

  

A very big sample, which runs the risk of estimating parameters being changed by 

dynamics that do not represent future behaviors of temperature anymore, including 

urban influences, is regarded to be a worse sample to research temperature dynamics 

than a 31-year duration period. On the other hand, if the period is really short, it's 

possible that crucial dynamics won't be shown, which could lead to a bad model 

(Alexandridis and Zapranis, 2006). 

 

From our data set of 31 years, we plot the graph of average temperature as shown in 

figure 4.1. This graph shows the average temperature of Kasungu district from 1990-

2020. It highlights the seasonality of daily average temperature changes, particularly 

highlighting how it resembles a sine function.  The daily average temperature fluctuates 

often and predictably between hot summer and cold winter months. 
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Figure 3.1 shows a stochastic model of average daily temperature in Kasungu from 1990 to 2020. 

 

The use of using the Ornstein-Uhlenbeck procedure to mean-revert simulate 

temperature behaviour is justified in light of seasonal fluctuation likewise long-term 

trends in temperature. The daily average temperature variation is meant to gradually 

return to the mean over time. The Anderson Darling test was used to determine whether 

the varying temperatures for the Kasungu district are normal. The hypothesis was 

rejected with an 𝐴 = 0.83279, 𝑃. 𝑣𝑎𝑙𝑢𝑒 = 0.03181. Although it is not normally 

distributed, we shall treat the daily variation in temperature as a Brownian motion. This 

is the case because when the histogram is used to check the temperature difference's 

normality, it finds that it is roughly normal. This agrees with what Wang, et al., (2015) 

who state that when data is huge then it has to be approximate normal and Brownian 

motion should be considered. Figure 4.2 illustrates that the temperature differential is 

roughly normal. 
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Figure 3.2: histogram of temperature differences of Kasungu district, Malawi. 

The motions of the process are characterized by the stochastic differential equation if 

we indicate by 𝑇𝑡 the average temperature at the date 𝑡. 

 𝑑𝑇𝑡 = 𝑑𝑇𝑡
𝑚 + 𝑘(𝑇𝑡

𝑚 − 𝑇𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡  

where 𝑊𝑡 is the Brownian Motion, 𝜎𝑡 is the volatility square root time of the 

fluctuations, 𝑇𝑡
𝑚is the long-term mean, and 𝑘 is the mean reversion rate. 

To better understand the dynamics of temperature, we computed the descriptive 

statistics of the data, as provided in Table 1. 

Table 3.1: Kasungu's descriptive temperature statistics 

Maximum 34.7 

Minimum 9 

Mean 21.88196 

Median 22.1 

Mode 23.25 

Variance 8.504897 

Standard Deviation 2.916316 

Skewness -0.1304493 

Kurtosis 2.961842 

Coefficient of variation  13 % 

 

According to a descriptive evaluation of the information, the modal temperature is 

23.250C, while the average daily temperature is 21.88330C. The coefficient of variation 

(CV) is defined as the difference between the standard deviation and the mean. With an 

increase in the coefficient of variation, the mean dispersion becomes more pronounced. 

Usually, it is expressed as a percentage. The estimated average of 21.88330C (in our 

example) is shown to be representative of the data by the coefficient of variation. The 

CV of 13% demonstrates the data's minimal variability. As a result, a dataset's estimated 

average of the values is more reliable. 

 

The observed distribution exhibits a little amount of leftward asymmetry, with a 

skewness (asymmetry coefficient) smaller than 0 (-0.1304493). The data's median 

temperature is 22.1°C, whereas the mean is 21.88195°C, making the data's mode, 
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23.25°C, greater. The mode must be larger than both the median and the arithmetic 

mean in order for there to be left-skewed asymmetry, and this is proven (Kovac, 2020). 

 

The size of the two tails' combined lengths is measured by kurtosis. It calculates how 

likely the tails are. The amount is typically contrasted with the normal distribution's 

kurtosis, which is 3 in this case. Our data are normally distributed because the observed 

kurtosis is 2.961842, which is roughly 3.  

 

3.2 TREND AND SEASONALITY 

The temperature process has a seasonal trend, as seen in figure 4:1. Consequently, we 

create a seasonal mean that also considers patterns as  

          𝑇𝑡
𝑚 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌),                       𝜔 =

2𝜋

365
 

where 𝑡 is the range of days (1–365) in a calendar year. 𝑇𝑡
𝑚⁡is the predicted temperature 

for a given day in 2021.  𝐴 + 𝐵𝑡, which reflects the tendency brought on by urban 

effects and global warming, since extreme temperature occurrences do not necessarily 

occur at the beginning and middle of the year. C, which stands for amplitude, 

determines when we feel the highest or lowest temperature. 

Using trigonometric formulae, we have 

𝑇𝑡
𝑚 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌) 

= 𝐴 + 𝐵 + 𝐶1 sin(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) 

Where 

𝑐 = √𝑐1
2 + 𝑐2

2⁡ 

𝜌 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑐2
𝑐1
) − 𝜋 

To determine the parameters 𝐴 = {𝐴, 𝐵, 𝑐1, 𝑐2} that solve the optimization problem 

𝑚𝑖𝑛𝐴||𝑇𝑡
𝑚 − 𝑋(𝑡)||, we therefore fit 𝑇𝑡

𝑚 using least squares methods. 𝑋(𝑡) is the data 
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vector. We present estimated values for parameters in table 4:2, all of which suggested 

that they are significant. When the estimated values are inserted into 𝑇𝑡
𝑚we get 

𝑇𝑡
𝑚 = 22.04 − 0.0000286𝑡 + 2.89929𝑠𝑖𝑛 (

2𝜋

365
𝑡 + 1.60807)                    (30) 

where A is the coefficient, which is set to 22.04 °C, and is computed as the average of 

daily average temperatures between 1.1.1990 and 31.12.2020. Coefficient B, which has 

a value of -0.0000284t°C, represents the expected rise in the annual average 

temperature in 2021 as compared to the average of the average temperatures for the 

base period (1990-2020). 

Given that it assumes the highest average daily temperature in 2021 will be around 

24.93929 °C (22.04 °C + 2.89929 °C) and the lowest will be approximately 19.14071 

°C (22.04 °C - 2.89929 °C), the value of Factor C is 2.89929 °C, which is realistic and 

predicted. 

As a result, the average daily temperature, previously computed at 22.04 °C, can be 

anticipated at the end of March (2.85 months after the year's start), and all average daily 

values beginning on January 1 should be lower than 22.04 °C with an upward tendency. 

The sine function shift is 1.60807, or roughly three months of a year, in terms of the 

sine function, or 2.85 months. In March, the yearly average temperature for the months 

that are not susceptible to significant temperature swings changes. 

The predicted values for 2021 were derived using the O-U procedure and have been 

presented in Figure 3:9 by substituting the 365 calendar days for t. 

Table 3:2 provides the seasonal mean's estimated parameter values. 

Parameter  Estimated  Std Error t value Pr(>|t|) 

A 2.204e+01 3.600e-02 612.248 < 2e-16 *** 

B -2.864e-05 5.512e-06 -5.196 2.07e-07 *** 

C1 -8.671e-01 2.546e-02 -34.058 < 2e-16 *** 

C2 2.986e+00 2.545e-02 117.331 < 2e-16 *** 
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Figure 3:3 shows the daily average temperature and predicted season means. 

The yearly mean and the daily average temperature are depicted in Figure 3:3. The 

mean reasonably fits the data. 

 

3.3 ESTIMATION OF MEAN REVERTING SPEED 

According to Patricia P. et al., (2021) and Wang et al.,( 2015) derived the simplest 

Ornstein-Uhlenbeck process, often known as a mean-reverting process, is as follows. 

𝑑𝑇𝑡 = [𝛼(𝑇𝑡
𝑚 − 𝑇𝑡) +

𝑑𝑇𝑡
𝑚

𝑑𝑡
]⁡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡                                                        (31) 

Here, 𝑇𝑡
𝑚, is the normal level of 𝑇𝑡, to which 𝑇𝑡 tends to revert, and 𝛼 is the speed of 

reversion. Keep in mind that the difference between 𝑇𝑡 and 𝑇𝑡
𝑚 determines the 

anticipated change in 𝑇𝑡. 𝑇𝑡 is more likely to decrease (increase) over the following 

brief period of time if 𝑇𝑡 is higher (less) than 𝑇𝑡
𝑚. Therefore, despite satisfying the 

Markov characteristic, this process lacks independent increments. 

If the value of 𝑇𝑡 is currently 𝑇0 and 𝑇𝑡 is calculated using equation (18), then its 

anticipated value at any point in the future is given by  

       𝐸[𝑇𝑡] = 𝑇𝑡
𝑚 + (𝑇0 − 𝑇𝑡

𝑚)𝑒−𝛼𝑡                                                                          (32) 

Also, the variance of (𝑇𝑡 − 𝑇𝑡
𝑚) is 

𝑉[𝑇𝑡 − 𝑇𝑡
𝑚] =

𝜎2

2𝛼
(1 − 𝑒−2𝛼𝑡)                                                                             (33)   

For derivation of equation 32 and 33, we refer to appendix 4 
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The expected value of 𝑇𝑡 converges to 
𝜎2

2𝛼
, as may be seen from these formulae. 

Additionally, as 𝛼 → ∞,𝑉[𝑇𝑡] → 0, this denotes that 𝑇𝑡 can never stray from 𝑇𝑡
𝑚, not 

even momentarily. In the end, 𝑇𝑡 becomes a straightforward Brownian motion, and 

𝑉[𝑇𝑡] → 𝜎𝑡
2. The first-order autoregressive process in discrete time is represented by 

equation (32) in continuous time. Equation (32) is the limiting case for the following 

AR(1) process as ∆𝑡 → 0. 

 

𝑇𝑡 − 𝑇𝑡−1 = 𝑇𝑡
𝑚(1 − 𝑒−2𝛼) + (𝑒−2𝛼 − 1)𝑇𝑡−1 + 𝜖𝑡                       (40) 

where 𝜖𝑡 has the mean of a normal distribution zero and a standard deviation of 𝜎𝑡and 

𝜎𝑡
2 =

𝜎2

2𝛼
(1 − 𝑒−2𝛼𝑡)                                                                           (41) 

Therefore, by doing the regression and utilizing discrete temporal data (the only data 

ever accessible), one might estimate the parameters of equation (34): 

           𝑇𝑡 − 𝑇𝑡−1 = 𝑎 + 𝑏𝑇𝑡−1 + 𝜖𝑡⁡                                                    (42) 

Afterwards, calculating 𝑇𝑡
𝑚 = −

𝑎

𝑏
, 

               𝛼 = −log⁡(1 + 𝑏)                                                               (43) 

And 

                𝜎 = 𝜎𝑡√
log⁡(1+𝑏)

(1+𝑏)2−1
                                                                 (44) 

Where 𝜎𝑡 is the regression's standard error. 

To find this mean reversion in our case we run the ACF of the decomposed data. The 

ACF of our data is our b. The same can also be found by running a regression. 𝑏 =

−0.2137. Substituting this into (43) we get the mean reversion of 0.2404. Fitting in 

mean reversion and 𝜎𝑡 in (44) we get 0.8943. 

Kasungu average temperature data was decomposed under the additive model to find 

the mean reversion. Figure 3:4. Shows the decomposed plot of the statistics on the 

average temperature of kasungu. Figure 3:5 shows the Auto Correlation Function 

(ACF) plot. 
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Figure 3:4: Decomposed plot of the Average Temperature of Kasungu 

 

Figure 3:5: shows the Auto Correlation Function (ACF) plot 

In ACF, there are significant autocorrelation values for a number of lags, which may 

call for the adoption of more advanced autoregressive models. The ACF also reveals 

the presence of seasonality in both the residuals and time dependence in the variance of 

residuals. To extract the 𝜎𝑡
2 from the residuals. We must analyse and simulate the 

random noise process first. But testing for stationarity Augmented Dickey-Fuller 

(ADF) test, the 𝐷𝑖𝑐𝑘𝑒𝑦 − 𝐹𝑢𝑙𝑙𝑒𝑟 = −7.3612, 𝑃. 𝑣𝑎𝑙𝑢𝑒 = 0.01. Since the P-value is 

less than 0.05, we cannot rule out the possibility that the data are stationary and that 

mean reversion is constant. 
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3.4 CALCULATING THE VOLATILITY OF THE TEMPERATURE PROCESS   

From the residual graph in figure 3:6 below, as many points do not vary from the normal 

line, it can be said that the residuals are normally distributed. 

  

Figure 3:6, a residuals graph. 

According to the methods outlined in (Benth, F.E., & Šaltyt-Benth, 2011; Dzupire et 

al., 2019; Wang, et al, 2015), the volatility is extracted. After that, the residuals are split 

into 365 categories, each of which represents a day of the year for the last 31 years 

(1990-2020). Then, we calculate the mean of the squared residual in each set of 

expected daily residuals: 

𝜎𝑡
2 = 𝐸[(𝜎𝑡𝜀𝑡)

2]                                                    (45) 

These numbers are used as observable estimates of the daily variance based on years of 

observations for the specific day, as seen in the figure below. 
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Figure 3:7, Empirical volatility 

As can be observed, the wet season has bigger temperature fluctuations than the dry 

season. In order to derive the volatility model, we fit the data using the volatility model 

(44) 

   𝜎𝑡
2 = −0.02603 − 0.17421 sin [

2𝜋𝑡

365
]                                        (45) 

Figure (3:7) illustrates the comparison between the estimated model and the empirical 

volatility and demonstrates how closely the estimated model matches the empirical 

model. 

 

Comparing the actual average temperature to the outcomes of the stochastic models 

under ARIMA to determine how well the model performed. The calculated Root Mean 

Square Error (RMSE), which evaluates how well the temperature model performs, has 

a value of approximately 1.158505 and the Mean Performance Error (MPE), which 

compares the actual temperature to temperature models, was roughly -0.3110809.  This 

means that the model is over-forecasted by around 0.311%. Hence figure 4:8 below is 

the graph of backward forecast temperature. This has been done on the decomposed 

temperature that is without seasonality and trend (random). Figure 4.9 shows forward 

forecasted temperature from 2021 to 2024 of Kasungu district using our temperature 

model. These forecasted temperature figures tell that no matter the situation is; this 

model can support the option provider in setting the derivative price for specific time 

frame regardless of anything. 
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Figure 3:8. shows backward forecasted temperature of kasungu district 

 

Figure 3:9. Shows forward forecasted Temperature of Kasungu district. 

 

 

4. HEDGING MAIZE CROP YIELD 

 

Hedging is an advanced risk management strategy that involves buying or selling an 

investment in order to potentially help reduce the chance of loss of an existing position. 

When purchasing call options, farmers use temperature as the underlying asset. A call 

option gives its owner the right to pay a premium and purchase the underlying asset 

from the provider for the specified time period at the specified price. If the buyer 

expects unfavourable weather that could increase the price of derivatives due to 

monetary gain generated by the set price the supplier has to offer the customer, they 

may decide to buy call options. 

Each GDD's monetary value and the weather derivative's monetary value are calculated 

based on the index's value. The derivative buyer wagers that throughout the duration of 

the contract, there will be an unfavourable change in air temperature for his company. 

The provider will pay the buyer a set fee if his prediction comes true. 

Weather derivatives must be introduced as a contingency mechanism to assist farmers 

in hedging possible losses in maize yield due to climate change, particularly the 
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fluctuation of temperatures. The paper offers temperature weather derivatives, which 

have temperature as their underlying index. Possibly one of the most important 

elements affecting the variability of maize output is temperature. 

Now taking from  Proposition 3.3: Therefore, the cost of the GDD call option at time 

𝑡 < 𝑡1⁡ is as follows: 

𝑐(𝑡) = 𝑒−𝑟(𝑡𝑛−𝑡)𝐸𝑄[𝑚𝑎𝑥⁡(𝐻𝑛 − 𝑘, 0)|⁡ℱ𝑡]                                                

= 𝑒−𝑟(𝑡𝑛−𝑡) ∫ (𝑥 − 𝑘)
∞

𝑘
𝑓𝐻𝑛(𝑥)𝑑𝑥                                                                

= 𝑒−𝑟(𝑡𝑛−𝑡){(𝜇𝑛 − 𝑘)𝛷 (−
𝑘−𝜇𝑛

𝜎𝑛
) +

𝜎𝑛

√(2𝜋)
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2
} “                                

 𝐶(𝑡) is the price or premium that the hedger (buyer of call option) needs to pay for the 

contract, r is a risk-free periodic market interest rate, t is the date the contract is issued 

(purchased), and 𝑡𝑛 is the date the contract is claimed or the expiration date. 𝐸𝑄is the 

expected payoff based on the predicted historical mean value of the temperature. The 

seller of the option would expect a reward for taking a risk loading which is often 

between 20% and 30% of the payoff (Baojing sun and G. Cornelis Van K. 2015).  In 

the current application, we set the risk loading at 20% of the expected payoff of the 

contract. 

From the forecasted temperature of 2021, the GDD has been calculated from August 1 

to December 31 since this is the time where irrigation of maize crop is mainly being 

done. It has been seen observed that the temperatures are too low in the early month of 

August. This gives an insight to the farmer to hedge their crop yield against low 

temperature. The temperatures are also high in the months of November and December; 

this also give an insight to a farmer to hedge his or her crop yield against high 

temperatures.  

To price the financial weather derivatives, we assume a tick size D = $1 and risk-free 

interest rate r = 0.08, Δt =
3

4
𝑦𝑒𝑎𝑟(1 August to 31 December, 2021) making 153 days.  

and risk loading 𝑏 = 20%,⁡⁡⁡𝜇 = 12. 680C. The forecasted GDDs and standard 

deviation for 2021 are 1937.430C, and 1.830C respectively are used to calculate the 

actual premiums for the contracts. 
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Table 3: Specification of GDD options for year 2021 

Items call options 

Weather index GDD(x) 

Strike Level 12.68-2*1.83 

Barrier level  B = 180 c 

Tick Size (D) $1 

Premium  $3.50 

Payoff Max(GDD-K, 0) 

Issue Date 1 August 2021 

Maturity date 31 December 2022 

  

 

The strike value is 𝜇 − 2𝜎⁡for above 2 standard deviation the forecasted GDDs,  This  

2 =
𝑥−𝜇

𝜎
 , then 𝜙(2) = 0.9772⁡𝑎𝑛𝑑⁡Φ(2) = 0.9772. The premium is calculated from 

equation 33. The premium is $3.50 because we assume that the GDD is above barrier 

level with a difference of one. This is where the barrier option is equal to vanilla option. 

In this case, the barrier option does not knock out. Hence gives the holder the right to 

buy the underlying asset since it does not reach or fall below a predefined level over 

the option's lifetime.  

The premium has been calculated to be $3.50 because we assume that the GDD is above 

the barrier level with a difference of one. This is where the barrier option is equal to the 

vanilla option. In this case, the barrier option does not knock out. Hence gives the holder 

the right to buy the underlying asset since it does not reach or fall below a predefined 

level over the option's lifetime. Now if the GDD does not exceed the barrier level then 

the farmer will not have to pay the premium of $3.50 because the option is invalid. On 

the same note, the farmer will have to exercise his right by paying the premium of this 

calculated premium when the GDD exceeds the barrier level.  In return for this, the 

farmer gets paid off which happens to be the difference between GDD and barrier. This 

will be taken daily within the contract. 
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5. DISCUSSION AND CONCLUSION 

The weather derivative market is a classical incomplete market since the weather 

indexes are not tradable assets, thus traditional no-arbitrage pricing methods such as 

the Black–Scholes are not applicable in pricing weather derivatives.  

The study results further prove that the average temperature has been increasing since 

1990. This is evidenced in Figure 3:5, tells us a story of an increase in average 

temperature. The results show that there will be a slow but steady increase in 

temperature. This scenario does not offer a positive outlook for agriculture production 

since they are vulnerable to an increase in temperature. 

According to our model, if the parameters remain unchanged in the next 30 years or so, 

the results of this study provides an early view of possible temperature patterns. This 

can help the government and non-governmental organisation to devise contingency 

measures. Agriculture can be particularly threatened by these forecasts. As already 

stipulated earlier sterility of maize can be triggered by temperatures of 380c and above 

and 100c and below. This tells us that agriculture done during irrigation is much more 

vulnerable.  

With the agenda of Malawi 2063, this study is good enough to be incorporated into 

agriculture policy as it presents a way to protect farmers from financial consequences 

due to extreme temperatures. This will bring an increase in the income of individual 

farmers, thereby mitigating poverty. We assume there is no correlation between the 

tradable asset and weather indexes, considering that we are interested in how a farmer 

can hedge temperature-related weather risks. The pricing model developed can be used 

in the agriculture industry where a farmer is interested in hedging weather risks due to 

temperature. It can also price weather derivatives in other weather-related industries 

affected by temperature. The results of this study can help insurance providers and the 

government to design products that can help the farmers. Projecting future temperatures 

and growing degree days is uncertain, so farmers wish to hedge against weather risk. 

However, markets must provide farmers with attractive, practical hedges representing 

producers' risks. 
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With, efficient and reliable pricing models, basis risks would decrease. As a result, the 

farmer would be more willing to pay for the contracts and trading activities in the 

market for weather derivatives. 
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APPENDICES 

Appendix 1 

Proof of Proposition 3.1: let us rewrite 𝑑𝑇𝑡 = 𝑑𝑇𝑡
𝑚 + 𝑘(𝑇𝑡

𝑚 − 𝑇𝑡) + 𝜎𝑡𝑑𝑊𝑡 as 

𝑑𝑇̂𝑡 = 𝑘𝑇̂𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡 

Where 𝑇̂𝑡 = (𝑇𝑡 − 𝑇𝑡
𝑚). The following transformation is practical for solving the 

stochastic equation above: 

G(𝑇̂, 𝑡) = 𝑒−∫ 𝑘(𝑢)
𝑡
0

𝑑𝑢𝑇̂𝑡 

Making use of the Ito lemma 

 
𝜕𝐺

𝜕𝑇̂
= 𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢,

𝜕2𝐺

𝜕𝑇̂𝑡
2 = 0,

𝜕𝐺

𝜕𝑡
= −𝑘𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢𝑇̂𝑡 

and 𝑎 = ⁡𝑘(𝑡)𝑇̂𝑡⁡ 

𝑏 = 𝜎𝑡 

We have that 

𝑑𝐺𝑡 = (𝑘𝑒−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑇̂𝑡 − 𝑘𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢𝑇𝑡)𝑑𝑡 + 𝜎𝑡𝑒

−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑑𝐵𝑡 

Which reduces to  

𝑑𝐺𝑡 = 𝜎𝑡𝑒
−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢𝑑𝐵𝑡 

Suppose⁡𝑠 < 𝑡, then integrating the above equation, we have that 

𝐺𝑡 − 𝐺𝑠 = ∫ 𝜎𝑡𝑒
−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢𝑑𝐵𝑡

𝑡

𝑠

 

And replacing G, we have that 𝑒−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑇̂𝑡 − 𝑇̂𝑠 = ∫ 𝜎𝑡𝑒

−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑑𝐵𝑡

𝑡

𝑠
 

By rearrangement, we achieve that 

𝑇̂𝑡 = 𝑒−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑇̂𝑡 + 𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢∫ 𝜎𝑡𝑒

−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢𝑑𝐵𝑡

𝑡

𝑠
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Since 𝑇̂𝑡 = (𝑇𝑡 − 𝑇𝑡
𝑚), 

(𝑇𝑡 − 𝑇𝑡
𝑚) = 𝑒−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢(𝑇𝑠 − 𝑇𝑠
𝑚) + 𝑒−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢∫ 𝜎𝑡𝑒
−∫ 𝑘(𝑢)

𝑡
0

𝑑𝑢𝑑𝑊𝑠

𝑡

𝑠

 

Finally, by rearranging, we prove the proposition 

𝑇𝑡 = 𝑇𝑡
𝑚 + 𝑒−∫ 𝑘(𝑢)

𝑡
0 𝑑𝑢(𝑇𝑠 − 𝑇𝑠

𝑚) + 𝑒−∫ 𝑘(𝑢)
𝑡
0 𝑑𝑢 +∫ 𝜎𝑠

𝑡

𝑠

𝑒−∫ 𝑘(𝑢)
𝑡
𝑠 𝑑𝑢𝑑𝑊𝑠 

Since 𝑠 = 𝑡 − 1`and 𝑢 = 𝑡 − 𝑠 hence 

𝑇𝑡 = [𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ]𝑒−𝑘(𝑡−𝑠) + 𝑇𝑡

𝑚 + ∫ 𝑒−𝑘(𝑡−𝑟)𝜎𝑟𝑑𝑊𝑟
𝑡

𝑠
                ∎ 

Appendix 2:  

Proof of Proposition 3.2: Let 𝑍𝑡 = 𝑒∫ 𝛼𝑑𝑠
𝑡
0 (𝑇𝑡

𝑚 − 𝑇𝑡)          

Ito’s lemma 

𝑑𝑍𝑡 =  𝑒∫ 𝛼𝑑𝑠
𝑡
0  𝑇𝑡

𝑚𝑑𝑡 + 𝛼𝑒𝛼𝑡(𝑇𝑡
𝑚 − 𝑇𝑡)dt- 𝑒∫ 𝛼𝑑𝑠

𝑡
0 𝑑𝑇𝑡 

=  𝑒∫ 𝛼𝑑𝑠
𝑡
0 [(𝑇𝑡

𝑚 + 𝛼(𝑇𝑡
𝑚 − 𝑇𝑡)𝑑𝑡 − (𝛼(𝑇𝑡

𝑚 − 𝑇𝑡) + 𝑇𝑡
𝑚)𝑑𝑡 − 𝜎𝑡𝑑𝑊𝑡 

∴ 𝑍𝑡 = 𝑍0 −∫𝑒∫ 𝛼𝑑𝑠
𝑡
0 𝜎𝑠𝑑𝑊𝑠

𝑡

0

 

∴   𝑒∫ 𝛼𝑑𝑠
𝑡
0 (𝑇𝑡

𝑚 − 𝑇𝑡) = 𝑇0
𝑚 − 𝑇0 − ∫ 𝑒∫ 𝛼𝑑𝑠

𝑡
0 𝜎𝑠𝑑𝑊𝑠

𝑡

0
     

Now 𝑇0
𝑚 − 𝑇0 = 𝑐⁡𝑔𝑖𝑣𝑒𝑠 

𝑇𝑡
𝑚 − 𝑇𝑡 = −𝑒∫ 𝛼𝑑𝑠

𝑡
0 ∫𝑒∫ 𝛼𝑑𝑠

𝑡
0 𝜎𝑠𝑑𝑊𝑠

𝑡

0

 

∴ 𝑇𝑡 = 𝑇𝑡
𝑚 + 𝑒∫ 𝛼𝑑𝑠

𝑡
0 ∫𝑒∫ 𝛼𝑑𝑠

𝑡
0 𝜎𝑠𝑑𝑊𝑠

𝑡

0

⁡ 

⇒ 𝐸[𝑇𝑡] = 𝑇𝑡
𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∎ 

Appendix 3 

 Proof of proposition 3.3 
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We know that 𝐻𝑛 ≡ 𝑥~(𝑁(𝜇𝑛, 𝜎𝑛
2). 𝐿𝑒𝑡⁡𝑢 = (

𝑥−𝜇𝑛

𝜎𝑛
),⁡ 

𝑡ℎ𝑒𝑛⁡𝑑𝑢 =
𝑑𝑥

𝜎𝑛
, 𝑑𝑥 = 𝜎𝑛𝑑𝑢, 𝑎𝑛𝑑⁡𝑥 = 𝜇𝑛 + 𝜎𝑛𝑢. 

∫ (𝑥 − 𝑘)
∞

𝑘

𝑓𝐻𝑛(𝑥)𝑑𝑥 = ∫ 𝑥
∞

𝑘

𝑓𝐻𝑛(𝑥)𝑑𝑥 − 𝑘∫ 𝑓𝐻𝑛

∞

𝑘

(𝑥)𝑑𝑥 

It is simple to calculate the right-hand side's second term in the manner shown below: 

𝑘∫ 𝑓𝐻𝑛

∞

𝑘

(𝑥)𝑑𝑥 = 𝑘 (1 − 𝑘∫ 𝑓𝐻𝑛

∞

𝑘

(𝑥)𝑑𝑥) 

= 𝑘 (1 − ⁡Φ (
𝑘 − 𝜇𝑛
𝜎𝑛

)) 

= 𝑘Φ(−
𝑘 − 𝜇𝑛
𝜎𝑛

) 

The first term ∫ 𝑥
∞

𝑘
𝑓𝐻𝑛(𝑥)𝑑𝑥 can be calculated as the follows: 

∫ 𝑥
∞

𝑘

𝑓𝐻𝑛(𝑥)𝑑𝑥 = ∫
𝑥

√2𝜋𝜎𝑛
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2

𝑑𝑥
∞

𝑘

 

= ∫
𝜇𝑛 + 𝜎𝑛𝑢

√2𝜋𝜎𝑛
𝑒−

𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

 

= ∫
1

√2𝜋
⁡(𝜇𝑛 + 𝜎𝑛𝑢)𝑒

−
𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

 

= ∫ ⁡𝜇𝑛
1

√2𝜋
⁡𝑒−

𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

+∫ 𝜎𝑛𝑢
1

√2𝜋
⁡𝑒−

𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

 

= ⁡𝜇𝑛Φ(−
𝑘 − 𝜇𝑛
𝜎𝑛

) +
𝜎𝑛

√2𝜋
∫ 𝑢⁡𝑒−

𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

 

=⁡ ⁡𝜇𝑛Φ(−
𝑘 − 𝜇𝑛
𝜎𝑛

) +
𝜎𝑛

√2𝜋
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2

 

The following can be used to generate the second term of the final equation:  

∫ 𝑢⁡𝑒−
𝑢
2

2

𝑑𝑢
∞

𝑘−𝜇𝑛
𝜎𝑛

= −𝑒−
𝑢
2

2

|𝑘−𝜇𝑛
𝜎𝑛

∞ ⁡ 
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Therefore, ∫ (𝑥 − 𝑘)
∞

𝑘
𝑓𝐻𝑛(𝑥)𝑑𝑥 = (𝜇𝑛 − 𝑘)Φ(−

𝑘−𝜇𝑛

𝜎𝑛
) +

𝜎𝑛

√2𝜋
𝑒
−
(𝑘−𝜇𝑛)

2

2𝜎𝑛
2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∎ 

Appendix 4 

We return to the easy O-U (mean-reverting) approach of equation (32) for the derivation 

of equations 32 and 33. Set 𝑇𝑡
𝑚 to 0 to make the calculation simpler, which results in 

the equation: 𝑑𝑇𝑡 = −𝛼𝑇𝑡⁡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡                                     (34) 

We said that equations (32) and (33) provide the mean and variance of 𝑇𝑡 in the text. 

To support this assertion, we can apply the Kolmogorov forward equation.  

Write 𝑀(𝜃, 𝑡) = 𝐸[𝑒−𝜃𝑇]as the moment-generating function for 𝑇𝑡 

 

         = ∫ 𝜙(𝑇0, 𝑡0: 𝑇, 𝑡)𝑒
−𝜃𝑇𝑑𝑡

∞

−∞
                                 (35) 

Then,  

           
𝜕𝑀

𝜕𝑡
= ∫

𝜕𝜙

𝜕𝑡
𝑒−𝜃𝑇𝑑𝑇

∞

−∞
                                             (36) 

The Kolmogorov forward for this process is  

         
𝜕𝜙

𝜕𝑡
=

1

2
𝜎2

𝜕2𝜙

𝜕𝑇2
− 𝛼𝑇

𝜕𝜙

𝜕𝑡
+ 𝛼𝜙                                  (37) 

The following equation for 𝑀(𝜃, 𝑡) is obtained by substituting this for 
𝜕𝜙

𝜕𝑡
 in equation 

(17) and integrating by parts: 

           
1

2
𝜎2𝜃2 − 𝛼𝜃

𝜕𝑀

𝜕𝜃
=

𝜕𝑀

𝜕𝑡
                                               (38) 

Boundary conditions must be met in order to solve this partial differential: 

𝑀(0, 𝑡) = 1,−𝑀𝜃(0,0) = 𝑇0⁡𝑎𝑛𝑑 

⁡𝑉[𝑇0] = 𝑀𝜃0(0,0) − 𝑇0
2 = 0 

Hence the equation has the following equation 

𝑀(0, 𝑡) = 𝑒
𝜎2𝜃2

4𝛼 [1 − 𝑇0𝜃𝑒
−𝛼𝑡 + (

1

2
𝑇0
2 −

𝜃2

4𝛼
) 𝜃2𝑒−2𝛼𝑡]             (39) 

Using the fact the 𝐸[𝑇𝑡] = −𝑀(0, 𝑡) and 𝐸[𝑇𝑡
2] = 𝑀00(0, 𝑡)verifies equation (32) and 

(33) ∎ 
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APPENDIX 

This section presents the R code used to analyse data in this study. 

 

ChitoTemp <- read_csv("C:/Users/Admin/Desktop/R FILES/ChitoTemp.csv") 

dates <- seq(as.Date("01/01/1990", format = "%d/%m/%Y"),by = "days", length = 

length(ChitoTemp$Temperature)) 

plot(dates, ChitoTemp$Temperature, type="l", main="Temperature of Kasungu 

District", xlab="year",ylab ="Average Temperature") 

hist(ChitoTemp$Temperature, main = "Temperature Difference Kasungu District", 

xlab="Average Temperature Difference", ylab ="frequency" ) 

mean(ChitoTemp$Temperature) 

median(ChitoTemp$Temperature) 

max(ChitoTemp$Temperature) 

min(ChitoTemp$Temperature) 

mode(ChitoTemp$Temperature) 

sd(ChitoTemp$Temperature) 

var(ChitoTemp$Temperature) 

summary(ChitoTemp$Temperature) 

summary.regression(ChitoTemp$Temperature) 

(cor.value<-acf(ChitoTemp$Temperature,plot = FALSE)$acf[2]) 

fit1=lm(ChitoTemp$Temperature~sin(2*pi*ChitoTemp$`Day 

Number`/365)+cos(2*pi*ChitoTemp$`Day Number`/365),ChitoTemp) 

summary(fit1) 

x<-c(ChitoTemp$`Day Number`) 

y<-c(ChitoTemp$Temperature) 

regression=lm(y~x) 

summary(regression) 
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confint(regression)#95% confidence intervals 

fit=lm(y~x+sin(2*pi*x/365)+cos(2*pi*x/365), ChitoTemp) 

summary(fit) 

dates <- seq(as.Date("01/01/1990", format = "%d/%m/%Y"),by = "days", length = 

length(ChitoTemp$Temperature)) 

plot(dates, ChitoTemp$Temperature, type="l", main="Temperature of Kasungu 

District", xlab="year",ylab ="Average Temperature") 

mu=22.04-0.0000284*ChitoTemp$`Day Number`-

0.08671*sin(2*pi*ChitoTemp$`Day 

Number`/365)+2.986*cos(2*pi*ChitoTemp$`Day Number`/365) 

plot(dates, ChitoTemp$Temperature, type="l", xlab="Year", ylab="Average 

Temperature") 

lines(dates, mu, type = "l",col="red",lwd=2,lty="solid") 

legend("topleft", c("daily average temperature", "seasonal mean"), lty = 

c("solid","solid"), col=c("black","red")) 

plot(dates, mu, type = "l",col="red",lwd=2,lty="solid") 

acf(ChitoTemp$Temperature^2) 

plot(ChitoTemp$Temperature, type="l") 

attributes(fit) 

wt=fit$fitted.values 

dat= ChitoTemp-mu 

dat = random_Chito 

random_Chito 

acf(dat, na.action=na.pass) 

  x<-c(random_Chito) 

my_acf=acf(x, na.action = na.pass) 

my_acf 
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my_acf$acf[2] 

acf(dat, na.action=na.pass) 

acf(dat^2,na.action=na.pass) 

my_acf$acf[2] 

write.table(dat, "decompose_chito$random", row.names=FALSE, sep=",") 

summary(dat) 

hist(dat$Temperature) 

plot(dat, type="l") 

#dt_1<- diff(random_Chito, lag=1) 

dt_1<-lag(random_Chito, 1) 

dt_2<-lag(random_Chito,2) 

dt_2<-lag(random_Chito,3) 

dt_2<-lag(random_Chito,4) 

datt=random_Chito[2:length(random_Chito)] 

dt_1=dt_1[1:length(dt_1)-1] 

fit2=lm(datt~dt_1) 

summary(fit2) 

sum((ChitoTemp$Temperature- mean(ChitoTemp$Temperature))^2) 

ss= 0.675865*dt_1 

dates <- seq(as.Date("01/01/1990", format = "%d/%m/%Y"),by = "days", length = 

length(datt)) 

plot(dates, datt, type="l", ylab="Temperature") 

lines(dates, ss, type = "l", col="red") 

legend("topleft", c("Observed Temperature", "Predicted 

Temperature"),lty=c("solid","solid") , col=c("black","red")) 

res=fit2$residuals 

res=res/ 1.125 
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write.table(res, "decompose_Chito$random", row.names=FALSE, sep=",") 

skewness(decompose_Chito$random) 

kurtosis(decompose_Chito$random) 

plot(decompose_Chito$random, type="l") 

plot(decompose_Chito$random^2, type="l") 

par(mfrow=c(1,2)) 

plot(acf(res, plot=FALSE),main="ACF of Residuals",col="red",lwd=4, lty="solid") 

plot(acf(res^2, plot=FALSE), main="ACF of Residuals", col="red",lwd=4, 

lty="solid") 

vol=decompose_Chito$random 

summary(vol) 

vol=vol[1:365] 

x=1:365 

#da=lm(vol~sin(2*pi*x/365)) 

da=lm(vol~sin(2*pi*x/365), subset=(1:length(x)!=306)) 

summary(da) 

par(mfrow = c(2,2)) 

plot(da) 

za=−0.02603 − 0.17421sin(2*pi*x/365) 

par(mfrow=c(1,1)) 

plot(vol, type="l", xlab="Days of the Year",ylab="Volatility") 

lines(za, type="l", col="red", lwd=2, lty="solid") 

legend("topleft", c("empirical volatility", "Predicted volatility"),lty=c("solid","solid") , 

col=c("black","red")) 

x=1:length(res) 

res1=res/za^(0.5) 

par(mfrow=c(1,2)) 
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plot(acf(res1, plot=TRUE), main="ACF of Residuals", col="red",lwd=4, lty="solid") 

plot(acf(res1^2, plot=FALSE),main="ACF of squared Residuals", col="red",lwd=4, 

lty="solid") 

dates <- seq(as.Date("01/01/1990", format = "%d/%m/%Y"),by = "days", length = 

length(res1)) 

par(mfrow=c(1,1)) 

plot(dates, res1, main="Reisduals Plot", type="l", ylab="Residauls",xlab="Year") 

hist(res1) 

kurtosis(res1) 

skewness(res1) 

library(tseries) 

jarque.bera.test(res1) 

summary(res1) 

#Simulation 

n.sample <- rnorm(n = 11315, mean = 21.88, sd = 2.916) 

#Skewness and Kurtosis 

library(moments) 

skewness(n.sample) 

kurtosis(n.sample) 

#Histogram 

library(ggplot2) 

ChitoTemp <- data.frame(n.sample) 

ggplot(ChitoTemp, aes(x = n.sample), binwidth = 2) +  

  geom_histogram(aes(y = ..density..), fill = 'red', alpha = 0.5) +  

  geom_density(colour = 'blue') + xlab(expression(bold('Simulated Samples'))) +  

  ylab(expression(bold('Density'))) 
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